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Abstract

Modern technologies in manufacturing, transportation, energy generation and distribution, smart
buildings, smart cities and so on heavily involve large-scale, distributed networked control systems
(NCSs). Nowadays, the communication between sub-systems within a NCS occurs mostly over
wired networks. However, in large scale systems, the cost of installation and maintenance of these
wired networks can be significant.

One method of cost reduction while also gaining flexibility, is to replace these wired networks
with wireless networks. Utilizing wireless networks within NCSs allows for greater flexibility, since
no new cables have to be installed when adding new sensors and/or actuators. Further, it opens up
for the use of remote sensors and actuators in locations, that are prohibitive with cabled networks.
These sensors and actuators can be battery powered and mounted on moving objects, such as
vehicles or drones. This opens up for entirely new possibilities for control and sensing within
NCSs.

However, wireless networks introduce network effects that can severely affect the performance
of the sub-systems, and in some cases, lead to instability. These effects include, but are not limited
to, congestion, interference, packet loss and bandwidth limitations. In this thesis, we address the
controller and estimator design for NCSs that are connected with wireless networks. We show, that
designs that take these network effects into account can not only achieve increased performance,
but also guaranteed closed-loop stability.

The first part of this thesis considers the synthesis and analysis of controllers and estimators
for networks affected by random packet loss. In particular, Chapter 3 considers controller and
estimator synthesis and analysis for linear systems affected by independent and identically dis-
tributed packet loss. We establish a form of duality that extends the duality in the classical linear
quadratic Gaussian result to the design for systems affected by packet loss. Chapter 4 extends
the results from Chapter 3 and presents a method to synthesise controllers for networks where the
packet loss model contains memory as well. This however results in a large number of controllers.
To reduce the amount of controllers, we present three methods that trade-off controller complexity
and control performance.

The second part of this thesis (Chapters 5 and 6) considers the control design problem for a
large distributed system with a bandwidth limited wireless network. The wireless transmission
protocol features a limited number of reliable transmission slots with negligible packet dropouts
and a more widely available transmission period, where packet collisions and delays occur more
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frequently. We propose a controller and scheduler co-design that optimally selects both the sched-
ule on which actuators to address, and the control inputs for the sub-systems that are addressed.
Simulation studies illustrate that the online optimal co-design method results in significantly im-
proved performance over heuristic scheduling. However, the computational complexity for the
online algorithms makes practical implementations of the proposed method prohibitive. To re-
duce the computational complexity, the design is extended by the use of a novel model predictive
control (MPC) algorithm that combines approximations to infinite horizon cost functions with a
short online prediction horizon. This results in improved control performance while maintaining
relatively low computational complexity.

In this thesis, we show that taking networks effects, such as packet loss and bandwidth lim-
itations, directly into account in the controller and estimator design phase leads to significant
performance gains and in some cases, guaranteed closed-loop stability.
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Notation

, Definition
(. . . ) A sequence
{. . . } A set
R The set of real numbers
Rn Vector with n elements taking values in the set R
Rn×m Matrix with n rows and m columns taking values in the set R
N The set of natural numbers
Z The set of all integers
Za The set of integers {0, 1, · · · , a− 1}
card (A) The cardinality of the set A
A > 0 (A < 0) The matrix A is positive (negative) definite
A ≥ 0 (A ≤ 0) The matrix A is positive (negative) semi-definite
A ≥ B The matrix A−B ≥ 0
AT Transpose of the matrix A
A−1 The inverse of matrix A
A† Pseudo inverse of matrix A
trace (A) Trace of the square matrix A
σ (A) Spectral radius of the matrix A
diag {X} The matrix with X on its (block-)diagonal
In The n× n matrix with ones on its diagonal
0n×m The n×m matrix containing zeros
ai The i’th column vector in the matrix A
aji The j’th element in the i’th column vector of the matrix A
‖x‖ Two-norm of x
‖x‖2Q Weighted norm of x squared i.e. xTQx
dxe Rounds x up to the nearest larger integer
bxc Rounds x down to the nearest lower integer
x%N x modulo N returns the remainder after division for x

N

Pr {X} The probability for the event X
Pr {X|Y } The probability for the event X knowing Y
Pr {X ; Z} The probability for the event X which distribution is parameterized by Z
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E {X} Expected value of the random variable X
E {X|Y } Expected value of the random variable X knowing Y
E {X ; Z} Expected value of the random variable X which distribution is parameterized by Z
1S (y) The indicator function returns one if y ∈ S or zero else
U (i, j) Uniform distribution in the interval [i, j]
N (µ,Σ) Gaussian distribution with mean µ and (co-)variance Σ
x ∼ N (µ,Σ) The random variable x is Gaussian distributed
x ∼ U (i, j) The random variable x is uniformly distributed
⊗ The Kronecker product

vec (A) The vector of the columns of A stacked i.e.
[
aT1 aT2 · · · aTn

]T

◦ The composition of functions
n! The factorial n! = n(n− 1)(n− 2) · · · 1
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Abbreviations

BI beacon interval
CA cost averaged
CAP contention access period
CFP contention free period
CSMA carrier sense multiple access
CSMA/CA carrier sense multiple access with collision avoidance
FDMA frequency division multiple access
flop floating point operation
FSMC finite state Markov chain
GA group averaged
GTS guaranteed time-slot
i.i.d independent and identically distributed
JLS jump linear system
LQ linear quadratic
LQG linear quadratic Gaussian
LQR linear quadratic regulator
LTI linear time-invariant
MA Markov averaged
MJLS Markov jump linear system
MMSE minimum mean square error
MPC model predictive control
MSS mean square stability
NCS networked control system
NP non-deterministic polynomial-time
PAN personal area network
RR round robin
SDP semi-definite program
TCP transmission control protocol
TDMA time division multiple access
UDP user datagram protocol

ix





Contents

Abstract iii

Acknowledgements v

Notation vii

Abbreviations ix

Contents xi

1 Introduction 1
1.1 Wireless networks in NCSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Outline and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 7
2.1 Challenges in wireless networked control systems . . . . . . . . . . . . . . . . . . . 7
2.2 Wireless networks for networked control systems . . . . . . . . . . . . . . . . . . . 9

2.2.1 Industrial wireless networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Packet loss modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Control and estimation over wireless networks . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Control over wireless networks . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Estimation over wireless networks . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 The separation principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Duality for control and estimation for systems with i.i.d. packet losses 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Linear quadratic regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Dual offline estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 A few notes on the separation principle . . . . . . . . . . . . . . . . . . . . 27

3.3 Stability results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

xi



Contents

3.3.2 Offline estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Convergence of the Riccati equation . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5.1 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.2 Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.A Proof of Proposition 3.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.B Proof of Proposition 3.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.C Proof of lemmas in Section 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Control over networks with correlated packet losses 45
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Optimal predictive controller design . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Sub-optimal reduced complexity controllers . . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 Grouping the packet arrival sequences . . . . . . . . . . . . . . . . . . . . . 53
4.4.2 Optimal controller for reduced Markov chain (MA) . . . . . . . . . . . . . . 54
4.4.3 Group averaged controller (GA) . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4.4 Reducing the amount of controllers in the design (CA) . . . . . . . . . . . . 55

4.5 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5.1 DC servo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5.2 Mass spring system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.A Proof of Proposition 4.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.B Proof of Theorem 4.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Scheduling for control over wireless networks 67
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Networked control setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Network considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.2 System setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Stochastic control formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.1 Solution to the minimization problem . . . . . . . . . . . . . . . . . . . . . 76
5.3.2 Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.4 Numerical considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4.1 Branch and bound algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4.2 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4.3 Performance of small coupled systems. . . . . . . . . . . . . . . . . . . . . . 84
5.4.4 Larger system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xii



Contents

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.A Proof of Lemma 5.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.B Proof of Theorem 5.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 A periodic approach to scheduling and control co-design 93
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1.1 System setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.1.2 Periodic scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.1.3 A time-invariant formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1.4 A few notes on controllability . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Finite horizon stochastic control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2.1 Solution to the minimization problem . . . . . . . . . . . . . . . . . . . . . 100
6.2.2 Link between time-varying and LTI formulation . . . . . . . . . . . . . . . . 102

6.3 Infinite horizon approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.1 Discounted cost formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.2 Averaged infinite horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.4.1 Model predictive control (MPC) with final state weighting . . . . . . . . . . 108
6.4.2 Discounted MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.4.3 Offline implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.5 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.5.1 The impact of the choice of β on the final state weighting . . . . . . . . . . 115
6.5.2 Comparison of the online and offline implementations . . . . . . . . . . . . 115

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.A Proof of Theorem 6.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.B Proof of Lemma 6.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.C Proof of Theorem 6.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.D Proof of Lemma 6.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.E Proof of Theorem 6.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.F Proof of Theorem 6.3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.G Proof of Theorem 6.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.H Proof of Lemma 6.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.I Proof of Theorem 6.4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7 Conclusions and future directions 135
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.2.1 Correlated packet dropouts . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.2.2 Scheduler and controller co-design . . . . . . . . . . . . . . . . . . . . . . . 137

Bibliography 139

xiii





Chapter 1

Introduction

Over the last half a century, significant advances have been made in digital technology, both within
our homes and the industry. Particularly, the continuous advances within sensing, actuation,
communication and computation have paved the way to utilize automation and control within not
only the industry, but also in peoples homes and utilities.

The inputs to the actuators of control systems have evolved from mechanically or hydraulically
controlled mechanisms to electronically controlled mechanisms. While the controllers that provide
the actuator inputs initially were located at the physical system, they now move further away.
This opened up for new methods of control, such as centralized and distributed control methods,
where systems are interconnected through large-scale networks over which systems and controllers
can communicate. Applications range from complex industrial plants, to the control systems in
automobiles as well as the financial sector.

Since the 80’s these networked control systems (NCSs) communicated over wires by utilizing
protocols such as Fieldbus, HART and CAN [74]. This, however, leads to increasing costs and
complexity during the installation and maintenance of the NCSs, as they become larger scale.
A significant part of this cost is found in the wiring of the NCSs, which can amount to 100s
or 1000s of USD per meter [2], [18], [96]. For example, the NCS in the Airbus A380 airplane,
contains 530 km of wires with 40 000 connectors [39]. Additionally, cables, connectors, routers and
switches in NCSs tend to wear over time. The maintenance and replacement of these component
can amount to significant costs over the lifetime of the NCS [67].

In recent years, significant advances within wireless communication mediums resulted in a large
scale market penetration within homes, commercial applications and wearables. The introduction
of industrial wireless standards such as WirelessHART [30], ISA100 [46] and, to a certain extend,
ZigBee PRO [133], introduced the possibility to adopt wireless networks within NCSs. Research of
these new possibilities to utilize wireless networks within NCSs has accelerated significantly within
the last decade [2], [20], [132]. However, industrial adoption of wireless networks within NCSs has
yet to see a similar development. The reason for the merely slow adoption of wireless networks
for the use in NCSs, is found in numerous problems and challenges that currently are not fully
addressed. This includes challenges such as more varying transmission delays and robustness to
interference from the environment, but also security and reduced bandwidth compared to wired
counterparts. However, also new possibilities arise when using wireless networks, such as the use
of battery powered wireless remote sensors and actuators. These can even be utilized to monitor
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1. Introduction

and control moving objects, such as cranes and forklifts within the NCS [1], [34]. Researchers
from different fields are attempting to address these challenges with analytical frameworks for the
analysis and synthesis of various aspects for utilizing wireless networks within NCSs. This amounts
to dealing with disturbances and delays on the network, as well as bandwidth limitations and/or
power constraints. Also, cyber-security within NCS design is receiving increasing attention [97].

In the remainder of this chapter, we clarify some of the benefits and open challenges for the
use of wireless networks in NCSs. This is followed by the presentation of the thesis outline and
our contributions to the field.

1.1 Wireless networks in NCSs

Systems on modern industry floors are getting more and more interconnected. Conventionally,
control of the systems is performed over cabled networks through for example Fieldbus, CAN bus
or HART. The expenses related to the use of wires are however significant [2], [18], [96]. With
the quality of digital sensors improving while prices tend to decrease, the cabling and routing
within wired NCSs amount to a greater part of the total implementation costs [2], [18]. Further,
the increasing availability of low-power, wireless digital sensors and actuators [2], [18], provides
a significant financial motivation to move from using wired to use wireless networking in NCS
implementations. In addition, the use of relatively cheap wireless sensors provides the opportunity
to measure information that was not feasible or possible to obtain using wired networks [25]. This
additional information can be utilized to design more advanced and adaptive control algorithms,
and to include fault detection and maintenance scheduling to reduce breakdowns and downtime.
This opens up for new levels of flexibility that were not available before, such as the control of
mobile autonomous vehicles or formation control of drones [1], [22], [34]. Further, the use of
wireless networks in NCSs can improve the overall reliability of the NCS, since the risk of broken
connectors and wires is greatly reduced [67], [96].

Wireless technology has improved significantly over recent years with the availability of low-
power, low-latency protocols such as WirelessHART, ISA100 and to some extent ZigBee PRO. The
former two protocols support reliable communications by the use of time division multiple access
(TDMA), where users can get transmission slots at fixed time intervals. This can for example be
used for periodic control and sensing. In addition to the reliable communication channel, sporadic
and less time-critical communications can be performed using carrier sense multiple access with
collision avoidance (CSMA/CA). The latter can also be utilized for process monitoring or control
when the subsystems in a NCS have slow dynamics. For these reasons, we propose methods that
perform control and estimation over wireless, rather than wired, networks.

Open challenges however limit wide adoption of wireless networks within large scale industrial
NCS settings. These challenges include less predictable delays, especially in multi-hop networks,
and increased risks for packet losses and collisions compared to the wired counterparts. Many
researchers propose frameworks to characterize, analyze and design controllers and estimators for
the use within wireless NCSs affected by packet loss and delays [13], [29], [41], [95], [113], [127],
[130], [132]. While in traditional control systems sampling tends to occur periodically, NCSs do
not necessarily utilize periodic sampling. This can be caused by random delays [29], or be actively
implemented as a strategy to reduce network usage and preserve power on remote sensing and
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actuation devices [5], [9], [38], [64]–[66], [71], [87], [103], [112], [118].
Another possible limitation is, that the bandwidth of wireless networks is significantly reduced

compared to the wired counterparts. This limits the amount of information that can be received
from sensors or commands that can be transmitted to actuators. Therefore, proper prioritizing
and scheduling of the data may be required [9], [32], [42], [59], [92], [93], [111], [114], [120], [131].

Security concerns are another cause for the reluctance that the industry shows in the adoption
of wireless networks in NCSs. While even NCSs that are connected through wired networks can be
vulnerable to attacks [97], [110], it is extremely challenging to properly isolate a wireless network.
Especially the well-known Stuxnet virus, that infected industrial NCSs, demonstrated the need for
more research into cyber-security of NCSs [97].

We believe that wider penetration of the use of wireless networks in industrial NCSs will occur
once the above issues have been addressed. The challenge is however, that reliable control and
estimation over wireless NCSs requires the integration of aspects from widely different fields of
research. This includes control, all layers of the network stack from the physical to application
layers as well as software and network security. In this thesis, we will view this problem from
a control design perspective, where the main focus is on control performance and robustness for
NCSs that utilize unreliable and bandwidth limited wireless network links.

1.2 Outline and contributions

This section outlines the remainder of this thesis and highlights the novel contributions by the
author.

Chapter 2: Background

This chapter presents relevant background on industrial wireless networks and the modelling of
packet loss. This is followed by the state of the art of control and estimation on wireless NCSs with
random packet loss. The chapter concludes with a brief review of stabilizability and separation for
controller and estimator design in wireless NCSs.

Chapter 3: Duality for control and estimation for systems with i.i.d. packet losses

In this chapter, we establish a form of duality between offline estimator design and optimal control
for networks that are affected by random independent and identically distributed (i.i.d) packet
loss. This result extends the duality that exists in the classical optimal controller and Kalman filter
design to systems that are affected by random packet loss. The statistics of the network are directly
taken into account in the design phase, which allows for more robustness against packet loss. The
result in this chapter allows the optimal offline estimator design by solving a dual control problem.
Further, we show that stochastic stability of the dual system is equivalent to stochastic stability
of the original system. The chapter concludes with simulation studies to verify the designs.

This chapter is based on the results that are presented in the work:

• E. G. W. Peters, D. Marelli, M. Fu, and D. E. Quevedo, “Unified approach to controller
and MMSE estimator design with intermittent communications,” in 55th IEEE conference
on decision and control, CDC, Las Vegas, NV, USA, 2016, pp. 6832–6837.
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Chapter 4: Control over networks with correlated packet losses

This chapter investigates controller design for more complex correlated network models. Unlike
i.i.d network models, these more complex models can capture memory effects on networks. Taking
these models directly into account in the controller design allows for significantly improved control
performance compared to i.i.d models. However, the optimal control laws become increasingly
complex. To reduce the controller complexity, we propose three methods that trade-off controller
complexity and performance. Simulation studies show, that notable performance gains can be
achieved over simple i.i.d network models.

This chapter contains the results that are presented in the works:

• E. G. W. Peters, D. Marelli, D. E. Quevedo, and M. Fu, “Controller design for networked
control systems affected by correlated packet losses,” in IFAC world congress, Toulouse,
France, 2017,

• E. G. W. Peters, D. Marelli, D. E. Quevedo, and M. Fu, “Predictive control for networked
systems affected by correlated packet loss,” International journal of robust and nonlinear
control, 2017, Early access for Special Issue on Stochastic Predictive Control.

Chapter 5: Scheduling for control over wireless networks

In this chapter, we present a controller and scheduler co-design for a NCS that is interconnected
by a shared wireless network. The network is based on the IEEE 802.15.4 protocol and is affected
by random packet loss. Since the network is shared, the bandwidth that can be used for the NCS
is limited. We propose a co-design method that utilizes the available bandwidth in both the more
reliable and less reliable, but more accessible, parts of the transmission frame of the IEEE 802.15.4.
It shows, that the optimal co-design can be split in a separate controller and scheduler phase. A
model predictive control (MPC) implementation is proposed. Simulation studies that utilize the
proposed design show significant performance gains over heuristic scheduling.

This chapter incorporates results from the works:

• E. G. W. Peters, D. E. Quevedo, and M. Fu, “Co-design for control and scheduling over
wireless industrial control networks,” in 54th IEEE conference on decision and control, CDC,
Osaka, Japan, 2015, pp. 2459–2464,

• E. G. W. Peters, D. E. Quevedo, and M. Fu, “Controller and scheduler codesign for feedback
control over IEEE 802.15.4 networks,” IEEE transactions on control systems technology,
vol. 24, no. 6, pp. 2016–2030, 2016.

Chapter 6: A periodic approach to scheduling and control co-design

This chapter extends the results from Chapter 5. We propose a periodic framework which makes
it possible to approximate the infinite horizon co-design problem. This leads to a number of
methods which can greatly improve the performance of the MPC implementation that is presented
in Chapter 5 while reducing the computational cost. Further, one of the proposed methods leads
to closed-loop stability. Additionally, the solutions to the infinite horizon co-design problem can be
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used for the design of offline periodic schedules that result in closed loop stability. The performance
of the proposed algorithms is investigated by the use of simulation studies.

This chapter is based on and extends the results of the work:

• E. G. W. Peters, D. E. Quevedo, and M. Fu, “Controller and scheduler codesign for feedback
control over IEEE 802.15.4 networks,” IEEE transactions on control systems technology,
vol. 24, no. 6, pp. 2016–2030, 2016.

Other publications

The following publications are not part of this thesis, but inspired some of the presented work:

• E. Henriksson, D. E. Quevedo, E. G. W. Peters, H. Sandberg, and K. H. Johansson, “Multiple-
loop self-triggered model predictive control for network scheduling and control,” IEEE trans-
actions on control systems technology, vol. 23, no. 6, pp. 2167–2181, 2015,

• E. G. W. Peters, D. E. Quevedo, and J. Østergaard, “Shaped Gaussian dictionaries for
quantized networked control systems with correlated dropouts,” IEEE transactions on signal
processing, vol. 64, no. 1, pp. 203–213, 2016.
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Chapter 2

Background

Networked control systems (NCSs) are large, spatially distributed systems that utilize shared
communication networks to exchange information, such as sensor measurements and commands
for e.g. actuators. In the last decades, spatially distributed NCSs have gained increasing attention
[13], [41]. While initially NCSs utilized wired communication channels, recent advances in wireless
communication technologies have opened up for the wide-scale development and utilization of
wireless communication within NCSs. The use of wireless communication within NCS architectures
allows for greater flexibility and reduced wiring as well as maintenance costs. This is evident in
the penetration of wireless communication within NCS applications in the industry, power grids,
and the smart home. Examples on this can be found in the works [73], [75], [76] and references
therein.

This section begins with a presentation of a number of challenges that arise when implementing
wireless networks within NCSs. This is followed by an introduction of wireless network protocols
that are designed to be used within NCSs. Going slightly more in dept, we present a number of
common methods on how to model packet loss on wireless networks. We conclude this section
with a brief overview of the state of the art on controller and estimator design for systems that
communicate over networks affected by packet loss.

2.1 Challenges in wireless networked control systems

Wireless NCSs provide numerous advantages over wired NCSs. However, when utilizing wireless
networks in the NCS, some factors need to be considered during the controller and estimator
design. Figure 2.1 illustrates a NCS where the controller is connected to a single or multiple
plants, respectively, through a wireless network. In the NCSs in Figure 2.1, both sensor data and
control commands or inputs are transmitted over a wireless communication network between the
controller and plant. While wireless communication mediums do not require wires to interconnect
the devices within the NCS, certain effects that only appear in very limited amounts on wired
networks become more apparent and have to be considered in the design. These effects include:

• Interference. Both wired and wireless networks are affected by different disturbances that
affect the performance and reliability of the channel [1], [28], [34], [129], [130]. The main
disturbances consist of packet collisions and interference on the channel as well as fading
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Plant

Controller

Wireless network

Sensor

Actuator

(a) NCS with a single loop.

Wireless network

Centralized
controller Distributed

Plant

(b) Distributed NCS with centralized controller.

Figure 2.1: Two examples on a NCS. Figure 2.1a shows a single control loop where the controller
communicates with the actuator and sensor of a plant over a wireless network. In Figure 2.1b,
one centralized controller communicates with a distributed plant over a wireless network. This
distributed plant has many actuators and sensors at different physical locations.

of the power of the radio wave as it propagates. This interference can be caused by other
wireless networks or appliances that operate or produce noise on the channel frequencies
as well as congestion when too many users transmit simultaneously. From a control design
perspective, these effects can be modelled as follows:

– Transmission delays. While transmission delays over wired networks often could be
predicted and remained fairly constant, the delays over wireless networks are much less
predictable [29], [113], [129], [130]. This is caused by effects such as the transmission dis-
tance, congestion on the network, and interference from other sources, such as networks
or appliances that produce noise in the frequency band which is utilized by the wireless
network. Depending on the architecture of the NCS, minor delays on the network that
are shorter than the sampling period can be neglected. On the other hand, long delays
where packets are delayed for more than one sampling interval, can have severe impact
on the performance and stability of the NCS [113]. In worst case scenario, a packet can
be delayed for such a long time, that a more recent packet arrives at the plant prior to
the earlier transmitted packet (commonly known as out-of-order packet arrival) [130].

– Packet loss. When a packet, that is transmitted does not arrive at the plant, the
packet is considered lost. Packet loss can be caused by many factors, such as packet
collisions in carrier sense multiple access (CSMA) protocols. These occur when multiple
users transmit their data simultaneously. Further, interference on the network can have
a significant impact on packet loss on a wireless network [1], [29], [34], [41], [129], [130].
Packets that are affected by a sufficiently long transmission delay or are received out-
of-order are often considered as being lost [25], [130].

• Bandwidth limitations. Every network channel has a maximum bandwidth [127]. This
bandwidth is shared among all users on the channel, since only one user can transmit or
receive on a channel at any given time.1 From a control design perspective, the following
factors have to be taken into account:

1Networks that utilize frequency division multiple access (FDMA) allow multiple users to transmit simultane-
ously using different channels.
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2.2. Wireless networks for networked control systems

– Data rate. The bandwidth constraint leads to a maximum data rate that can be
achieved on the network. This is generally the raw network data rate, which includes
the packet overhead. In large distributed NCSs, this puts limits on how many devices
can communicate within a given time frame [113], [127], [132].

– Transmission interval. Another method to reduce the bandwidth requirements is
to increase the transmission interval, e.g. the time between addressing a plant in a
distributed system [40], [65], [71], [103], [118], [132].

The aspects mentioned above can affect the control performance and in worst case lead to
instability of the NCS. It is therefore important to take these aspects into account during the
controller and estimator design phase. This thesis addresses in particular packet loss and band-
width limitations during the controller and estimator design for NCSs. Before presenting the state
of the art on controller and estimator design for NCSs that utilize wireless networks affected by
packet loss, we present a number of wireless network protocols that are designed for the use within
industrial wireless NCSs. This is followed by an introduction into present methods on how to for-
malize notions on packet loss, such that these can be taken into account during the controller and
estimator design. A more detailed introduction into bandwidth constraints on wireless networks
is deferred to Chapter 5.

2.2 Wireless networks for networked control systems

For the controller and estimator designs that are presented in this thesis, it is necessary to introduce
some relevant fundamental aspects of wireless networks. We provide an introduction to industrial
wireless network protocols, which are utilized in the NCSs that are considered for the optimal
controller and scheduler co-design in Chapters 5 and 6. However, to consider packet loss and
delays on the network, it is necessary to abstract the wireless network by appropriate models that
can be used directly in the synthesis and analysis of NCSs.

2.2.1 Industrial wireless networks

There exist multiple wireless network protocols that are designed to be utilized for industrial ap-
plications. This includes protocols such as WirelessHART [30], ISA100 [46] and ZigBee PRO [133].
These standards are all based on the IEEE 802.15.4 standard [43], [44]. The IEEE 802.15.4 stan-
dard is designed to be utilized for low power industrial environments with real-time requirements
and can operate in both a beacon and a non-beacon operated mode [43]. In this work, we however
only consider the beacon operated mode.

In the beacon operated mode, a centralized personal area network (PAN) coordinator (or
network coordinator) is responsible for the configuration and synchronization of the network. The
synchronization is done periodically at each beacon interval (BI), which marks the beginning of
a so-called superframe. The superframe is depicted in Figure 2.2 and is divided into an active
and an inactive period. All transmissions must finish before the end of the active period of
the superframe. The inactive period allows devices to go into a low power state until the next
superframe commences. The active period of the superframe consists of a contention access period
(CAP) and a contention free period (CFP). Both the CFP and the CAP are slotted and of a
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Figure 2.2: The IEEE 802.15.4 superframe.

fixed duration that is selected by the network coordinator [43]. During the CAP, any user can
transmit using carrier sense multiple access with collision avoidance (CSMA/CA) with random
back-off. This means, that prior to commencing a transmission, the user senses the network for
ongoing transmissions. If the network is occupied, the user delays its next transmission attempt
for a random amount of time. Transmissions that are delayed beyond the duration of the current
superframe, will proceed in the following superframe.

Meanwhile, the CFP is designed for real-time communication. Unlike the CAP, transmissions
in the CFP are allocated by the network coordinator. The IEEE 802.15.4 standard utilizes time
division multiple access (TDMA)2 to allocate transmission slots to users. This ensures that the
probability for interference and collisions during the CFP is significantly reduced. Users can
request for a transmission slot (also called a guaranteed time-slot (GTS)) in the CFP. The network
coordinator assigns these GTSs on a first-come-first-served base. When a user gets a GTS granted,
it can transmit during this GTS in the CFP of every superframe until the GTS gets unassigned.
Both the user and network coordinator can revoke a GTS. While the number of GTSs in the CFP
of each superframe is set by the network coordinator, the IEEE 802.15.4 standard only allows up
to 7 GTSs to be assigned simultaneously [43]. However, the IEEE 802.15.4e extension [44] as well
as WirelessHART and ISA100 allow for a larger number of GTSs in each superframe. In the IEEE
802.15.4 standard, it is optional to enable the CFP. However, the CAP is compulsory [43].

In beacon-enabled mode, the IEEE 802.15.4 standard allows for the use of acknowledgments
to confirm successful transmissions in both the CAP and CFP. This means, that upon successful
reception of a packet, the user transmits an acknowledgment. When acknowledgments are used,
the sender of the packet knows whether the packet is successfully transmitted upon receiving the
acknowledgment.

Thus, the IEEE 802.15.4 standard features two communication periods: The CFP and the CAP.
The former features more reliable communications, but has limited availability. On the other hand,
the latter is widely available, but features increased risk for packet delays and collisions. Next,
we illustrate how these packet delays and collisions affect the systems within the NCS. This is
followed by methods on how to model packet loss.

2.2.2 Packet loss modelling

Many studies consider NCS synthesis and analysis over reliable wired and wireless networks [21],
[32], [40], [42], [53], [59], [92], [93], [109], [129]. However, packet loss and delays are inevitable

2The IEEE 802.15.4e standard also supports FDMA in the CFP. This is however not considered in this thesis.
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Time

Sample k − 1 Sample k + 1 Sample k + 2 Sample k + 3

k k + 1 k + 2 k + 3 k + 4
Packet arrival

System sample
instance

Sample k

Figure 2.3: A conceptual illustration of Example 2.2.1. The periodic sampling intervals for a
system is illustrated on top. At each sampling interval, the packet that has arrived (illustrated
below the line) is utilized. Note that the packet that is needed for sample k + 2 is delayed until
after sample k + 2. What shall the NCS do at sample k + 2, since no packet arrived, and at time
k + 3, shall the NCS utilize the data from packet k + 2 and k + 3?

on implementations of wireless networks. When considering discrete-time systems, transmission
delays can be neglected, provided that the maximum delay is bounded by the sampling interval
of the system. It however depends largely on the sampling interval of the system whether this
assumption is practical. Also, the length of the delays on wireless networks can vary significantly
[113], [132]. The next example illustrates the concept of transmission delays with periodic sampling.

Example 2.2.1. A conceptual illustration of transmission delays is provided in Figure 2.3. The
periodic sampling times are illustrated above the time line. At each sampling instance, if available,
the new data is applied to the actuators. For example, at sample instance k in Figure 2.3, the
data that is transmitted in packet k is utilized. Likewise, at time k + 1, the data that is contained
in packet k + 1 is utilized. It here does not matter when packet k and k + 1 arrive as long as
they arrive before the sampling instance. However, as seen in Figure 2.3, sample k + 2 is taken
before packet k + 2 arrives. This means, that there is no new data to be utilized. In this case, the
system has to decide what data to use. Common methods in the control literature are to either use
the previous data, that is sample k + 1, or apply 0, e.g. reset the actuators [99]. Between sample
k + 2 and k + 3 both the delayed packet k + 2 and packet k + 3 arrived. Here, the system has to
consider whether to utilize the older data that is contained in packet k+ 2, or the newer data that
is contained in packet k + 3. Generally, more recent data is preferred over the older data, and the
data in packet k + 2 is discarded. In this setting, the packet at time k + 2 is considered to be lost
[113]. This is often referred to as “a packet dropout occurred at time k + 2”.

Example 2.2.1 reveals two important aspects that need to be considered in wireless NCS design:

1. What to do when delayed data arrives?

2. What to do when no data arrives?

In control system design for NCSs that are affected with packet dropouts, more recent data
is preferred over older data. This means, that for example in Figure 2.3, at time k + 3, the data
that is contained in the delayed packet k+ 2 is discarded and the more recent data in packet k+ 3
will be applied instead. The reason for this decision is that in NCS design, data packets tend to
contain measurement data from sensors and/or inputs that are to be applied at actuators for the
plant (see Figures 2.1a and 2.1b). In this case, more recent measurement or input data is preferred
over delayed measurement or input data. A packet that is delayed past the sampling interval is
therefore considered as being lost. This answers Item 1. The question in Item 2 will be answered
later when we introduce controller design for NCSs that are affected by packet loss and delays.
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In NCS design, packet loss is frequently modeled by using a stochastic distribution [41], [47],
[61], [77]–[79], [127], [130], [132]. A successful packet transmission is indicated by a binary variable
ρk ∈ {0, 1}, where ρk = 1 indicates a successful transmission at time k. The simplest packet
dropout model is the independent and identically distributed (i.i.d) model. This model assumes
a constant i.i.d probability for successful packet transmissions, which is given by

Pr {ρk = 1} = µ µ ∈ [0, 1] . (2.1)

This assumption is frequently utilized in NCS design [7], [8], [53], [90], [91], [100], [104]. However,
in reality, the packet arrival probability µ is affected by temporal effects and does contain memory
[12], [47], [51], [128]. One way to take this into account is by making the i.i.d probability in (2.1)
time-varying. However, this can introduce difficulties in the NCS design and analysis. A common
method to capture temporal network effects that contain memory, is the use of Markov models
such as the two-state Gilbert-Elliot model which is illustrated in Figure 2.4 [33], [54], [121]. In this
model, the packet arrival probability depends on a network state. In this case the probability for
a successful transmission is given by

Pr {ρk = 1|θk} ,

where the variable θ ∈ {Good,Bad} is the network state. Here, the “Good” state represents stable
network operation with a high packet arrival probability while the “Bad” state represents burst
errors that are caused by network effects such as congestion and interference. This results in a
lower packet arrival probability [51]. Thus,

Pr {ρk = 1|θk = Good} > Pr {ρk = 1|θk = Bad} .

The network state θ is Markov. This means that the current value of θk depends on the previous
outcome of θk−1. This is formally stated as

Pr {θk = Good|θk−1, θk−2, · · · , θ0} = Pr {θk = Good|θk−1} .

Associated with θ is the transition matrix

Pθ =
[
pGG pGB

pBG pBB

]
,

where for example pGB , Pr {θk = Bad|θk−1 = Good}.
The Gilbert-Elliot model in Figure 2.4 is a hidden Markov model, which means that the users

can not observe the network state θ, but only the transmission outcome ρk. While the two-
state Gilbert-Elliot model can capture network effects such as burst dropouts, the model can only
capture network effects with short memory, and it still relies on that the channel quality remains
stationary [12], [47], [51]. Increasing the model order of the Markov model, allows the capturing
of longer memory effects and to some extent, temporal effects [51], [95], [119], [122].

Other network models utilize finite state Markov chains (FSMCs) to define the network state
using recent history of packet arrivals [51], [119]. In this setting, a user can observe the net-
work state by monitoring the packet arrivals. In the FSMC model, the probability for successful
transmissions depends on a finite history of previous packet transmission outcomes, e.g.

Pr {ρk = 1|ρk−1, · · · , ρ0} = Pr {ρk = 1|ρk−1, · · · , ρk−d} d ≥ 0, (2.2)
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Figure 2.4: Gilbert-Elliot model with a “Good” and a “Bad” state. The arrows illustrate the
transitions with their associated state transition probabilities.
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Figure 2.5: The systems that are considered in the controller design Figure 2.5a and the estimator
design Figure 2.5b.

where d is the length of the relevant history. It is worth noting, that the i.i.d distribution in (2.1)
corresponds to the model (2.2) with history length d = 0.

In the next section we will present the state of the art on control and estimation over wireless
networks that are modelled using the i.i.d packet loss model presented in (2.1). Controller design
for networks models that utilize the FSMC model (2.2) is studied in Chapter 4.

2.3 Control and estimation over wireless networks

This section presents the state of the art on controller and estimator design for NCSs that are
affected by i.i.d packet dropouts.

2.3.1 Control over wireless networks

In this section, we consider a NCS as depicted in Figure 2.5a. In Figure 2.5a, the controller and
actuator are connected over a wireless network that is affected by random packet dropouts. On
the other hand, the state is transmitted directly over a lossless network. This is also called state
feedback. The system dynamics are given by a discrete-time linear time-invariant (LTI) model of
the form

xk+1 = Axk +Bûk +Dωk k ∈ N (2.3a)

ûk = ρkuk (2.3b)
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where A ∈ Rm×m is the internal system model and B ∈ Rm×n the input model. The vector
xk ∈ Rm is the state at time-step k and uk ∈ Rn the input. The initial state x0 is either known,
or has a known distribution. The disturbance ωk ∼ N (0,Σω) is white zero-mean Gaussian noise
with (co-)variance Σω and D is a matrix that contains the disturbance model and is of appropriate
dimensions. The input uk is transmitted over a wireless network where the binary random variable
ρk ∈ {0, 1} indicates successful packet transmissions. In this section we consider an i.i.d network
model where the packet arrival probability is constant over time, thus, as in (2.1), the probability
for a successful packet transmission is given by

Pr {ρk = 1} = µ.

This means, that whenever ρk = 0, no packet arrives at the controller. As posed in Item 2 in
Section 2.2.2, one has to decide what the actuator in Figure 2.5a shall do. In fact, it is an open
discussion in the literature, what the actuators shall do when no data is received [99]. The two
most common actuator strategies are set-to-zero and hold-input. However, the work [99] concluded
that none of these two actuator schemes are superior to the other. For set-to-zero, the actuators
are set to their zero position upon a packet dropout. The actuator strategy in (2.3b) is a set-to-zero
policy.

When using a hold-input policy, the previous actuator input is applied upon a packet dropout.
This is implemented by utilizing a buffer at the actuators. In (2.3), this replaces the actuator
strategy (2.3b) by

ûk = ρkuk + (1− ρk) ûk−1.

An alternative method to implement a hold-input strategy, is to use integrators at the actuators.
In this case, the controller transmits the desired change of the value held at the actuators instead
of the actual actuator value. When using integrators at the actuators, system (2.3a) can, using
state-space augmentation, be restated to

[
xk+1

bk+1

]

︸ ︷︷ ︸
ξk+1

=
[

A B

0n×m In

]

︸ ︷︷ ︸
Φ

[
xk

bk

]

︸ ︷︷ ︸
ξk

+
[
B

In

]

︸ ︷︷ ︸
β

ûk +
[
D

0

]

︸︷︷︸
Γ

ωk

ûk = ρkuk,

(2.4)

where the actuator input uk is the change of actuation instead of the actuator input. It is worth
noting, that system (2.4) is of the same form as the model (2.3) that utilizes a set-to-zero policy.
This means, that the same controller design method can be used to design control laws for set-to-
zero and hold-input actuator strategies.

More advanced actuator strategies involve packet predictive control, where the controller trans-
mits a packet containing predicted future control inputs. These predicted control inputs are then
utilized in the event of packet dropouts [58], [80], [89], or by the use of advanced packet dropout
compensation methods [35], [36], [57].

Next, we will present some concepts on stability of the system (2.3). For controller design,
an important question is: Is it possible to steer the state x (k) of the system (2.3) from any
initial position to any position in finite time? This concept is called controllability [4]. Consider a
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deterministic system of the form

xk+1 = Axk +Buk. (2.5)

Let

Uk , (ui : i = 0, · · · , k)

be a sequence of control inputs. The term controllability then refers to the ability to steer the
system (2.5) from any initial state x0 to any final state xk in finite time. This is formally defined
as:

Definition 2.3.1 (Controllability [4, Appendix B]). A pair (A,B) for the deterministic system
(2.5) is termed controllable if, for a finite time k and any initial state x0 ∈ Rm, there exists a
sequence of controls Uk = (ui : i = 0, · · · , k − 1), that can drive the system (2.5) from x0 to any
state x? ∈ Rm within k steps.

Definition 2.3.1 can be weakened to the condition that merely the unstable part of the system
matrix A has to be controllable. This is denotes stabilizability, and is formally defined as:

Definition 2.3.2 (Stabilizability [4]). A pair (A,B) is stabilizable if there exists a linear transform
T , such that

T AT −1 =
[
Ac Ac,uc

0 Auc

]
T B =

[
Bc

0

]
,

where the pair (Ac, Bc) is controllable, and if the subspace Auc has dimension larger than 0, Auc
is stable. That is, all eigenvalues of Auc are within the unit circle.

However, note that the system (2.3) is affected by both random packet loss and a random
disturbance. Due to these uncertainties, the state xk itself is a random variable and Definitions 2.3.1
and 2.3.2 are not applicable. For stochastic systems, instead of verifying whether a sequence of
controls can steer the system state to any particular value, it is investigated whether there exists
a sequence of controls that ensures boundedness of the first and second moment of the state xk.
This is called mean square stability (MSS).

Definition 2.3.3 (Mean square stability (MSS)[23], [49]). The system (2.3) is MSS if from any
initial distribution on x0, the first moment

lim
k→∞

E {‖xk‖} <∞

and the second moment

lim
k→∞

E
{
‖xk‖2

}
<∞.

Remark 2.3.1. It is worth noting, that for Definition 2.3.3 boundedness of the second moment
implies boundedness of the first moment. See [49, Theorem 3.4 ].

Definition 2.3.3 leads to the following stochastic analogue to Definition 2.3.2.
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Definition 2.3.4 (Stochastic stabilizability [23], [24], [49]). The system (2.3) is stochastically
stabilizable if there exists a sequence of controls Uk = (ui : i = 0, · · · , k − 1), such that the system
(2.3) is MSS. That is,

lim
k→∞

E
{
‖xk‖2

}
<∞.

It follows directly for the NCS in (2.3), that deterministic stabilizability of the pair (A,B) is a
necessary condition for stochastic stabilizability.

2.3.2 Estimation over wireless networks

Consider an autonomous discrete-time LTI system where the sensors and estimator are connected
through a wireless network. This system is depicted in Figure 2.5b. This system has dynamics

xk+1 = Axk + ωk

yk = Cxk + υk

ŷk = γkyk,

where A ∈ Rm×m, C ∈ Rq×m and the disturbances ωk ∼ N (0,Σω) and υk ∼ N (0,Συ) are white
Gaussian noise. The initial state x0 ∼ N (0, P0) is Gaussian distributed with covariance P0. ŷk
is the sensor measurement that is received by the estimator. The measurements are sent over
a wireless network that is affected by random packet loss. In this setting, the random variable
γk ∈ {0, 1} indicates successful packet transmissions. Consider the case where the network model
is i.i.d and the packet arrival probability is constant over time, that is

Pr {γk = 1} = λ.

The work [104] found, that when he packet dropouts are i.i.d, the optimal minimum mean square
error (MMSE) estimator is a Kalman filter, which only performs the innovation step upon successful
reception of the measurement data. Using this estimator, the state estimate

x̂k+1 , E {xk+1|ŷk+1} ,

is given by

x̂k+1 =
{

Ax̂k +Kk+1 (yk+1 − CAx̂k) if γk+1 = 1
Ax̂k if γk+1 = 0.

The estimator gain Kk+1 is designed to minimize the estimation error covariance

Pk+1 =
∥∥E
{
ek+1e

T
k+1
}∥∥2

,

where

ek+1 , xk+1 − x̂k+1 (2.6)

is the estimation error. This results in the Kalman gain

Kk+1 = Pk+1C
T
(
R+ CPk+1C

T
)−1 (2.7)
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Controller

Lossy network

u û

yŷ

ω, υ
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ρ

x̂

Estimator

Plant
(A,B,C,D)

ŷ

LQG controller

Figure 2.6: The NCS from Figure 2.1a with disturbances and packet loss parameters indicated.
The controller and estimator are co-located and can share information.

and error covariance

Pk+1 =
{

Q+APkA
T −APkCT

(
R+ CPkC

T
)−1

CPkA
T if γk = 1

Q+APkA
T if γk = 0,

(2.8)

where P0 is the covariance of x0. In contrast to the traditional Kalman filter [3], where the error
covariance is deterministic when P0 is known, the error covariance (2.8) is stochastic due to the
random variable γk. The covariance for this Kalman filter is updated online and will, contrary to
the traditional Kalman filter, not converge to a steady-state value [3], [104]. However, the work
[104] shows, that there exists a critical value on the packet arrival probability λc where for λ < λc,
the error covariance becomes unbounded. It is however non-trivial to obtain the exact value of λc.
Instead, the work [104] shows that there exist an upper and a lower bound λ+

c and λ−c , respectively.
Over the years, researchers have studied methods to tighten the upper and lower bounds, and in
special cases were able to make the upper and lower bounds coincide (i.e. λ+

c = λ−c ) [68], [86],
[102]. This characterization is also extended to Markovian packet dropout models [69], [94], [125].

As described above, the error covariance and Kalman gain (2.7) and (2.8) do not converge to
steady-state values. Pre-computing these values requires information about the entire sample-path
of γk. To address this, the works [27], [108] introduced jump linear system (JLS) estimators, which
allows for offline computation of the Kalman gain and error covariance. Numerical simulations
show, that when a sufficiently long history is considered, the performance of the JLS estimator is
comparable to the time-varying Kalman filter [27].

Next, we present the controller design for systems where the controller and actuator as well as
the sensor and estimator communicate over a wireless network that is affected by packet loss.

2.3.3 The separation principle

Sections 2.3.1 and 2.3.2 reviewed results on controller design using state feedback and estimator
design for autonomous systems, respectively. In this section, we present the state of the art
on linear quadratic Gaussian (LQG) design for NCSs that are affected by random packet loss.
Figure 2.6 depicts the NCS from Figure 2.1a in more detail. Consider the system model to be
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discrete-time LTI with dynamics

xk+1 = Axk +Bûk +Dωk

yk = Cxk + υk

ûk = ρkuk

ŷk = γkyk,

(2.9)

where ûk and ŷk are the control input and sensor output after being transmitted over a wireless
network. The i.i.d random variables γk, ρk ∈ {0, 1} indicate successful packet arrivals. Both γk

and ρk are i.i.d where Pr {γk = 1} = λ and Pr {ρk = 1} = µ. The probabilities λ and µ remain
constant over time.

The LQG controller in Figure 2.6 does not have direct access to the state xk. Instead, it has
intermittent access to the measurement ŷk that is transmitted over a network where packet loss
occurs. The goal is to design an optimal controller that using measurement ŷk can compute the
optimal control input uk, such that the cost function

JN = E
{
‖xN‖2S0

+
N−1∑

k=0
‖xk‖2Q + ‖ûk‖2R

∣∣∣∣∣Ik
}

(2.10)

is minimized [45], [100]. In (2.10) the set Ik represents the information that is available to the LQG
controller at each time-step, the positive semi-definite matrices S0, Q and R are tuning parameters
that trade-off control performance and control effort and N ≥ 0 is the prediction horizon.

It is well-known, that for the classical case where no packet loss occurs (that is Pr {ρk = 1} =
Pr {γk = 1} = 1, ∀k in (2.9)), one can separately design an optimal controller for system (2.9)
assuming state feedback and an optimal estimator assuming that the control input uk = 0. Then,
one replaces the state in the optimal feedback law uk = f? (xk) by the optimal MMSE estimate
x̂k, such that the optimal control law becomes uk = f? (x̂k) [4, Chapter 8]. However, when the
plant and controller communicate through a wireless network that is affected by random packet
loss, this procedure becomes more involved. The reason for this is, that the optimal estimator
needs information on the control input ûk that is applied at the actuators to compute the optimal
estimate. When the controller and the actuators are connected over a lossy network, the control
packet can be lost. In Figure 2.6, the estimator and the controller are co-located with each other.
This means, that the estimator has direct access to the control input uk prior to transmission
over the network, but not necessarily to ûk after being received by the actuator. When successful
packet transmissions are acknowledged, that is, the actuator sends an acknowledgement to the
controller upon successful reception of a packet, and the acknowledgements are not affected by
packet dropouts, the controller has access to ûk and ŷk. Formally, when using acknowledgements,
the optimal estimator has access to the following information at each time-step:

Ik = {ŷk, uk, γk, ρk, Ik−1}
= {ŷk, ûk, Ik−1} ,

with I−1 = ∅. Many works refer to this scheme as the transmission control protocol (TCP) case
[45], [100]. In this case, minimizing (2.10) results in an optimal controller that uses the feedback
form

uk = −Lkx̂k,
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where the optimal MMSE estimate x̂k is of the form

x̂k+1 =
{

Ax̂k + ρkBuk +AKk+1 (yk+1 − CAx̂k) if γk+1 = 1
Ax̂k + ρkBuk if γk+1 = 0,

(2.11)

with the Kalman gain Kk given in (2.7). The estimation error (2.6) then becomes

ek+1 =
{

Axk + ρkBuk + ωk −Ax̂k − ρkBuk −AKk+1 (yk+1 − CAx̂k)
Axk + ρkBuk + ωk −Ax̂k − ρkBuk

if γk+1 = 1
if γk+1 = 0

=
{

Aek + ωk −AKk+1 (yk+1 − CAx̂k)
Aek + ωk

if γk+1 = 1
if γk+1 = 0.

Note, that the estimation error does not depend on the control input ûk, and the error covariance
is given by (2.6). In this case, the optimal estimator and optimal controller can be designed
separately and thus, the separation principle holds. However, recall that the estimator (2.11)
needs to know ρk at each time-step.

When successful transmissions from the controller to the actuator are not acknowledged, the
controller does not have access to the packet transmission outcome ρk. In this case, the information
that the LQG controller has access to is comprised of

Ik = {ŷk, uk, γk, Ik−1}
= {ŷk, uk, Ik−1}

I−1 = ∅.

This is also called the user datagram protocol (UDP) case [45], [100], [106]. For the MMSE
estimator of the form (2.11), the estimation error (2.6) becomes

ek+1 =
{

Axk + ρkBuk + ωk −Ax̂k −E {ρk}Buk −AKk+1 (yk+1 − CAx̂k)
Axk + ρkBuk + ωk −Ax̂k −E {ρk}Buk

if γk+1 = 1
if γk+1 = 0

=
{

Aek + (ρk −E {ρk})Buk + ωk −AKk+1 (yk+1 − CAx̂k)
Aek + (ρk −E {ρk})Buk + ωk

if γk+1 = 1
if γk+1 = 0.

Thus, when the control inputs are not acknowledged, the estimation error depends on the control
input. In this setting, the separation principle does not hold and the design becomes more involved
[45], [53], [100]. This thesis is limited to estimator design where acknowledgements are utilized
and successfully received with probability one.

2.4 Summary

In this chapter, we presented numerous challenges that need to be considered and addressed when
using wireless networks within NCSs. These challenges include interference, which leads to packet
loss and transmission delays, as well as bandwidth limitations, which lead to constraints on the
data rate and the minimum achievable transmission interval. After an introduction to the IEEE
802.15.4 protocol standard, we introduced widely used methods to model packet loss on wireless
networks. This is followed by a presentation of the state of the art on controller and estimator
design for networks that are affected by random packet dropouts that are modelled by an i.i.d
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distribution. Finally, the separation principle is presented which, under certain conditions, allows
to design the optimal output feedback controller by separately designing an optimal state estimator
and optimal controller. Further, we presented concepts such as controllability and stabilizability
for systems that are affected by random packet loss.
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Chapter 3

Duality for control and estimation for
systems with i.i.d. packet losses

In this chapter we establish a new form of duality between offline estimator and controller design
for networked systems that are affected by independent and identically distributed (i.i.d) packet
dropouts. More specifically, we show that the optimal offline estimator can be obtained by design-
ing an optimal controller for a dual control problem. This extends the classical duality results to
networked control systems (NCSs) that are affected by random packet loss.

After a literature review in Section 3.1, we introduce the estimator and controller designs in
Section 3.2. Here, the design of the optimal offline controller and estimator leads to a modified
Riccati equation. In Section 3.3 we show that the existence of a solution to the modified Riccati
equation is a necessary and sufficient condition for mean square stability (MSS) of the controller.
We then show that the offline estimator Riccati equation is dual to the controller Riccati equation,
and use this duality to show stability of the offline estimator. Section 3.3 concludes with a dual
system formulation between the controller and offline estimator. This extends results from the
classical linear quadratic Gaussian (LQG) design to systems that are affected by random i.i.d
packet dropouts. The modified Riccati equations that are obtained in Section 3.2 depend on
the statistics of the communication channel between the controller and actuators or sensors and
estimator. Due to this dependency, the classical detectability and controllability conditions are
no longer sufficient for the existence of a solution to the modified Riccati equations. We therefore
in Section 3.4 discuss, based on existing theory, sufficient conditions for the convergence of the
modified Riccati equations. This chapter summarizes in Section 3.5 with numerical examples and
comparisons to other controllers and estimators.

3.1 Introduction

In this chapter we study two different discrete-time systems. The first is a linear time-invariant
(LTI) system where the sensor is connected to a state estimator over a wireless network. This
system is depicted in Figure 3.1. In the second system, the controller is connected to the actuators
over a wireless network where the controller has full knowledge of the state. This is depicted in
Figure 3.2. In both systems, the wireless network is modelled to either successfully transmit the
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3. Duality for control and estimation for systems with i.i.d. packet losses

entire packet, or to fail the transmission of the entire packet. Also the probabilities for successful
transmissions are i.i.d and do not vary over time. Here, a successful transmission occurs with
probability µ (or %) and a failure occurs with probability 1− µ (or 1− %). In the literature, there
exist numerous works that study controller design for the system depicted in Figure 3.2, where
i.i.d packet dropouts occur in the link between the controller and the actuators [11], [41], [45],
[100], [105], [106], [130]. Also, the design of estimators for systems as depicted in Figure 3.1, where
packet dropouts occur in the link between the sensor and estimator is well studied [88], [104], [126].
The works [50], [100] study the LQG problem with packet dropouts. In this setting, the controller
and estimator design is combined. Here, works such as [100] establish a form of duality between
the controller Riccati equation and the Riccati equation that bounds the performance of the online
estimator. There is however no duality in the classical sense as, e.g. between the linear quadratic
regulator (LQR) and Kalman filter, where one can design the Kalman filter by formulating it as
a dual control problem and vice versa. In this chapter, we will establish a similar form of duality
between a offline Kalman filter design and LQR design for systems that are affected by random
packet dropouts. We will later clarify exactly why this duality does not exist between the online
Kalman filter as presented in e.g. [98] and LQR.

Fully offline estimators will offer reduced performance compared to online estimators, such as
the Kalman filter [104] or semi-offline estimators such as the jump linear system (JLS) estimator
[27]. The disadvantage with an online Kalman filter is however, that the error covariance matrix
has to be updated online. Since this requires matrix inversions, the computational power that
is required can be undesirable for low power microcontrollers on battery powered devices for
applications such as remote sensing. Further, in cases where the hardware on which the algorithms
are implemented does not support floating point operations, complications arise since the matrix
inversion has to be implemented in fixed point arithmetic. The JLS estimator addresses this by
utilising a lookup table instead of online updating the error covariance. This results in merely minor
performance detriments compared to the online Kalman filter [27]. The JLS estimator however
requires that the history of the packet arrivals is tracked and that there is enough memory to store
the lookup table with estimator gains. This can be avoided altogether with the offline estimator,
where only one gain is applied.

Although the previous work [100] investigated the duality that exists between the Riccati equa-
tions that are used for the estimator and controller designs to establish stability for the controller
and bounds for the estimator error covariance matrix, the design that we present establishes duality
between the estimator error dynamics and the closed-loop control dynamics.

3.2 Problem setting

In this section, we will first introduce the estimator setting. This is, we will introduce the controller
design to point out why there is no dual controller design to the online estimator design for systems
that are affected by random packet dropouts. This section then concludes with the presentation
of the optimal offline estimator.
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Figure 3.1: The system that is considered for the estimator design.

For the estimator we consider a system of the form

xk+1 = Axk + ωk,

yk = γk (Cxk + υk) ,
(3.1)

with x0 ∼ N (0, P0), ωk ∼ N (0,Σω), υk ∼ N (0,Συ) and the pair (A,C) being detectable. The
pair (A,C) being detectable is equivalent to the pair

(
AT , CT

)
being stabilizable [4]. Also, γk is

a stationary binary random process. Here γk = 1 means that the measurement yk is successfully
received by the estimator. The binary variable γk is i.i.d and Pr {γk = 1} = µ.

The common method to deal with packet dropouts for the estimator is to only perform the
innovation step when data is received, as described in Section 2.3.2. However, note that in (2.8)
in Section 2.3.2, the error covariance update is depending on the packet transmission outcome γk.
Therefore the sequence (P0, · · · , PN ) is unique depending on the sample path of (γk−q, · · · , γk).
Since there are 2N different sample paths for γk, it is infeasible to offline compute Pk for large
N . The authors of [108] address this issue by taking a finite length sample path into account
when computing Pk. This results in a set of Pk’s that each depend on a particular outcome of
(γk−q, · · · , γk−1). This allows for offline computation of Pk while providing sub-optimal perfor-
mance compared to online calculations of Pk.

The above presented estimators however both rely on the available information of previous
packet arrivals ( (γk−q, · · · , γk)). The issue with this is, that there exists no dual optimal controller
to this problem. The reason for this will be pointed out later in this chapter. We will now first
present the optimal controller design for the system depicted in Figure 3.2.

3.2.1 Linear quadratic regulator

For the controller we consider systems as depicted in Figure 3.2, which are of the form

xk+1 = Axk + ρkBuk + ωk, (3.2)

with x0 ∼ N (0,Σx0), ωk ∼ N (0,Σω) and the pair (A,B) being stabilizable. Also ρk is an i.i.d
stationary binary random process, where ρk = 1 indicates that control signal uk is successfully
received by the plant. This occurs with probability Pr {ρk = 1} = %.
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Figure 3.2: The system that is considered for the controller design.

Denote the matrix sequence

Lk,N , (L`,N : ` = k, · · · , N − 1) , (3.3)

and let LN , L0,N . Define the following control law

uk = −Lk,Nxk, k = 1, · · · , N. (3.4)

Consider the linear quadratic (LQ) cost function

J (x0,LN ) = 1
N

E
{

N∑

k=0
‖xk‖2Q +

N−1∑

k=0
‖ρkuk‖2R

∣∣∣∣∣x0

}
, (3.5)

where Q ≥ 0 and R ≥ 0 are design parameters that trade off control performance against con-
trol effort. Note, that the cost function takes the expected value of the states x0, · · · , xN+1.
The controller has causal information on x and ρ. That is, at time k, the controller knows
(xk, · · · , x0, ρk−1, · · · , ρ0). However, the controller at time k does not know the outcome of ρk.
Since the cost (3.5) penalizes the state x and control input u into the future, it is necessary to
utilize the mathematical expectation, since the future outcomes of ρ and ω in (3.2) are unknown.
We want to design control laws that minimize (3.5), thus

L?N , arg min
LN

J (x0,LN ) ,

where L?N ,
(
L?`,N : ` = 0, · · · , N − 1

)
.

The solution of the above minimization problem is given in the following proposition.

Proposition 3.2.1. Let Q be such that the pair
(
A,Q

1
2

)
is detectable and R ≥ 0. Then, for each

k = 0, · · · , N − 1, the optimal control gain for control laws of the form (3.4) is given by 1

L?k,N =
(
R+BTSN−kB

)−1
BTSN−kA, (3.6)

with

S0 = Q,

Sk+1 = Q+ATSkA− %ATSkB
(
R+BTSkB

)−1
BTSkA. (3.7)

1If in (3.6) and (3.7), the matrix R + BTSkB is singular, the inverse can be replaced by the Moore-Penrose
pseudo inverse.
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and % = Pr {ρk = 1}. This results in the optimal cost

J?N (x0) = 1
N
xT0 SNx0 + 1

N

N−1∑

`=0
trace (ΣωS`) .

Also, if the limit

S̄ , lim
k→∞

Sk (3.8)

exists, then the asymptotic minimum cost

J?∞ (x0) , lim
N→∞

J (x0,L?N ) (3.9)

is given by

J?∞ (x0) = J (x0,L?∞)

= trace
(
ΣωS̄

)
,

where the infinite sequence L?∞ ,
(
L?`,∞ : ` = 0, 1, · · ·

)
.

Proof. See Appendix 3.A.

In view of the result in Proposition 3.2.1, whenever the limit in (3.8) exists, we define the offline
control gain by

L̄ , lim
N→∞

L?0,N−1. (3.10)

Also denote the infinite sequence of offline control gains

L̄∞ ,
(
L̄, L̄, · · ·

)
.

This choice results in the following state feedback law

uk = −L̄xk, (3.11)

which leads to the closed-loop system

xk+1 =
(
A− ρkBL̄

)
xk + ωk. (3.12)

This defines our offline controller design.

Remark 3.2.1. Notice that, if we want the controller design equations (3.6) and (3.7) that are
dual to those of the Kalman filter (2.7) and (2.8), we would need to replace % by ρk in (3.7) (such re-
placement would have to be made together with a consistent modification of the cost function (3.5)).
However, this dual design would require that the future transmission outcomes (ρk..., ρk,N−1) are
known at time k. This is obviously impossible because ρk is only causally known. It is for this
reason that a dual controller to the Kalman filter is not possible. On the other hand, we can modify
the estimator design, so as to obtain, instead of a Kalman filter, a design which is dual to (3.6)
and (3.7). This motivates the offline estimator design which is presented in the next section.
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3.2.2 Dual offline estimator

Consider the system (3.1), and the matrix sequence

KN , (K`,N : ` = 0, · · · , N − 1) .

Define the following estimator scheme

x̃k+1 = Ax̃k + γkKk,N (yk − Cx̃k) , k = 0, · · · , N − 1, (3.13)

with x̃0 , E {x0} = 0. The second term on the right-hand side of (3.13) is called the innovation,
which only is performed upon successfully receiving the measurement, e.g. γk = 1. If γk = 0, only
the prediction Ax̃k is used. The difference between the online estimator and the offline estimator
is, that for the offline design, we do not assume knowledge on the history of transmission outcomes
(ρ0, · · · , ρk). We therefore rely on the statistics for ρk. Thus, we want to design the sequence
KN , (K`,N )N−1

0 , such that the estimator scheme (3.13) minimizes the following cost function

V (KN ) = E
{
‖xN−1 − x̃N−1‖22

}
, (3.14)

which penalizes the estimation error. It is worth noting, that the offline estimator scheme (3.13)
at time k uses the knowledge of γk to decide whether to do the innovation or not. However,
the cost (3.14) does not utilize the actual knowledge on γk, and merely uses the expected value.
This will inevitably lead to a sub-optimal performance compared to the online Kalman filter, that
utilizes the full history of γ. The main practical advantage of the offline Kalman filter is, that
it reduces the computational complexity significantly in implementations, allowing higher sample
rates or lower computational requirements. Further, as will be illustrated next, we will obtain a
dual design to the LQR design.

The sequence of optimal offline estimator gains

K?N ,
(
K?
`,N ; ` = 0, · · · , N − 1

)

is given by

K?N , arg min
KN

V (KN ) .

The solution to the above problem is given in the following proposition.

Proposition 3.2.2. For each k = 0, · · · , N − 1, the optimal estimator gain for estimators of the
form (3.13) is given by

K?
k,N = APkC

T
(
Συ + CPkC

T
)−1

, (3.15)

where P0 is the initial covariance of x0 and

Pk+1 = Σω +APkA
T − µAPkCT

(
CPkC

T + Συ
)−1

CPkA
T , (3.16)

where µ = Pr {γk = 1}. Also, if the limit

P̄ , lim
k→∞

Pk (3.17)
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exists, then the asymptotic minimum cost

V ? , lim
N→∞

V (K?N ) (3.18)

is given by

V ? = V (K?∞) = trace
(
P̄
)
, (3.19)

where the infinite sequence K?∞ , (K?
0 ,K

?
1 , · · · ).

Proof. See Appendix 3.B.

In view of Proposition 3.2.2, whenever the limit in (3.17) exists, we define the offline estimator
gain by

K̄ , lim
N→∞

K?
N−1,N . (3.20)

This choice then results in the following offline estimator scheme

x̂k+1 = Ax̂k + γkK̄ (yk − Cx̂k) (3.21)

where x̂0 , E {x0} = 0. Also define the infinite sequence of offline estimator gains

K̄∞ ,
(
K̄, K̄, · · ·

)
.

3.2.3 A few notes on the separation principle

Consider the system

xk+1 = Axk + ρkBuk + ωk

yk = γk (Cxk + υk) ,
(3.22)

which is depicted in Figure 2.6.
It is worth noting, that in the transmission control protocol (TCP) case, i.e. where successfully

received packets are acknowledged, the separation principle (Section 2.3.3) holds for system (3.22).
This follows directly, since the estimator (3.13) becomes

x̃k+1 = Ax̃k + ρkBuk + γkKk,N (yk − Cx̃k) .

Where from (3.22) yk = γk (Cxk + υk). Computing the estimation error in the cost (3.14) then
yields

xk+1 − x̃k+1 = Axk + ρkBuk + ωk − (Ax̃k + ρkBuk + γkKk,N (yk − Cx̃k))

= A (xk − x̃k)− γkKk,NC (xk − x̃k)− γkKk,Nυk + ωk.

Note that the estimation error does not depend on the control input uk. Therefore, the opti-
mal offline estimator and optimal controller can be designed separately using Propositions 3.2.1
and 3.2.2. By combining the arguments from, for example, [100] and from the proof of Proposi-
tion 3.2.1, it follows that the optimal control law is then given by (3.11) where the state feedback
is replaced by the state estimate, as described in Section 2.3.3.
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In the user datagram protocol (UDP) case, where successful transmissions are not acknowl-
edged, the estimate (3.13) becomes

x̃k+1 = Ax̃k + E {ρk}Buk + γkKk,N (yk − Cx̃k) .

Recall E {ρk} = % This results in the estimation error

xk+1 − x̃k+1 = Axk + ρkBuk + ωk − (Ax̃k + %Buk + γkKk,N (yk − Cx̃k))

= A (xk − x̃k) + (ρk − %)Buk − γkKk,NC (xk − x̃k)− γkKk,Nυk + ωk,

which clearly depends on the control input uk. The separation principle therefore does not hold
for the UDP case. See for example [11], [45], [100] for more details on LQG over UDP networks.

Next, we will show stability for the controller and then establish stability for the offline estimator
by formulating a dual control system.

3.3 Stability results

In this section, we show that the convergence of the Riccati equations (3.7) and (3.16) is a necessary
and sufficient condition for stability of the offline estimator and the controller. We will first state
this for the controller and then show that the conditions for the estimator are dual to the control
part. Here, it is again important to note that both the controller and estimator depend on the
channel statistics γ and %, respectively. Bounds on γ and µ for when the Riccati equations converge
are discussed in Section 3.4.

We consider stochastic stability in the mean square sense, which is defined in Definition 2.3.4.
So to check for MSS it is sufficient to check whether limk→∞

∥∥E
{
xkx

T
k

}∥∥ exists.

3.3.1 Controller

In this section we present the conditions for when the the controlled system (3.12) is MSS.
Let

Ψk+1 , E
{
xk+1x

T
k+1
}

(3.23)

= E
{((

A− ρkBL̄
)
xk + ωk

)( (
A− ρkBL̄

)
xk + ωk

)T}
.

This can be restated as

Ψk+1 = E
{(
A− ρkBL̄

)
xkx

T
k

(
A− ρkBL̄

)T + ωkω
T
k

}

Since ρk is i.i.d, we can express this by the recursion

Ψk+1 = E
{(
A− ρkBL̄

)
E
{
xkx

T
k

} (
A− ρkBL̄

)T}+ E
{
ωkω

T
k

}

= AΨkA
T + %

(
A−BL̄

)
Ψk

(
A−BL̄

)T + Σω, (3.24)

which is linear in Ψk.
We now present one of the main results of this section. This result states, among others, that

(3.24) is bounded if and only if a solution to the Riccati equation (3.7) exists.
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3.3. Stability results

Theorem 3.3.1. Assume Σω is bounded and the pair (A,B) stabilizable. Then, the following
conditions are equivalent:

1. The second moment of the state using the offline control law (3.11) is bounded as k →∞ i.e.

lim
N→∞

‖ΨN‖ <∞.

2. The Riccati equation (3.7) is bounded as N →∞ i.e.

lim
N→∞

‖SN‖ <∞.

3. All eigenvalues of
√

1− %A are strictly within the unit circle.

4. The optimal solution to the infinite horizon cost (3.9), is given by

J?∞ (x0) = J∞
(
x0, L̄∞

)
.

Theorem 3.3.1 says that the existence of a solution to (3.8) is necessary and sufficient for MSS
and links this to the eigenvalues of the system matrix A and the statistics of the packet dropouts.
Further, the control law given by (3.11) minimizes the infinite horizon cost function. The proof of
Theorem 3.3.1 is presented in Section 3.3.1.1.

3.3.1.1 Proof of Theorem 3.3.1

To prove the result in Theorem 3.3.1, we first establish that the Riccati equation (3.7) can be
expressed as a map that depends on the controller gain (3.6). We then show, by adopting a result
from [49], that if (3.16) converges, then the same Riccati map using the offline controller gain
(3.10) converges to the same solution. We then establish a link between the map for the offline
controller and (3.23). The last step involves showing that the Riccati map converges if and only if
(3.23) converges. Finally Theorem 3.3.1 is proved by combining these results.

Next we will present the proof for Theorem 3.3.1. However, we first need a number of results.
While lemmas are presented in the following, their proofs have been deferred to Appendix 3.C.

Define for a known matrix L,

HL , A−BL.

Note that HL is the deterministic closed-loop response using control law L. Define the map

gL (X) , (1− %)AXAT + %HLXH
T
L + Σω,

which for a known L is linear in X. Then, it follows from (3.24) that

Ψk+1 =gL̄(Ψk). (3.25)

In the next lemma, we show that also the Riccati equation (3.7) can be expressed using a linear
map.
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3. Duality for control and estimation for systems with i.i.d. packet losses

Lemma 3.3.2. For every k ∈ N,

Sk+1 =fL?
N−k−1,N

(Sk) ,

with S0 = Q, L?k,N defined by (3.6) and

fL (X) , (1− %)ATXA+ %HT
LXHL +Q+ %LTRL. (3.26)

For a known sequence of gains LN as defined in (3.3), denote the composition

fNLN
(X) = fL0,N

◦ fN−1
L1,N

(X) ,

with f0
LN,N

(X) , X. When for all Lk ∈ LN it holds true that Lk = L0, k = 0, · · · , N − 1, the
above can be stated as

fNL0 (X) , fL0 ◦ fN−1
L0

(X) . (3.27)

Now note that by Lemma 3.3.2, the Riccati equation (3.7) can be expressed as

SN = fNL?
N

(Q) ,

where L?N is given in Proposition 3.2.1. Compositions of the map gL (X) can be written similarly.
This means that we can state (3.25) as

Ψk+1 = gk
L̄

(Ψ0) . (3.28)

In the following, we denote

L? , arg min
L

trace (fL (X))

L?N , arg min
LN

trace
(
fNLN

(X)
)
,

such that

trace (fL? (X)) = min
L

trace (fL (X))

trace
(
fNL?

N
(X)

)
= min
LN

trace
(
fNLN

(X)
)
.

The following lemma is adopted from [49, Theorem 5.2] and is needed for the proof of Theo-
rem 3.3.1. The lemma states that if there exists a solution to the Riccati equation (3.7) as k →∞
then, applying the offline control gain (3.10) in (3.27) will result in the same solution.

Lemma 3.3.3. The following holds true

lim
k→∞

Sk = lim
k→∞

fk
L̄

(Q) .

For later reference, we introduce the following two lemmas. The first states that, for a given
L, the recursions induced by the map fL are stable if and only if those induced by gL are stable.
The second states necessary and sufficient conditions for the maps fL (X) and gL (X) to be stable.
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3.3. Stability results

Lemma 3.3.4. For any X > 0 and L, the following holds true

lim
k→∞

∥∥fkL (X)
∥∥ <∞ ⇐⇒ lim

k→∞

∥∥gkL (X)
∥∥ <∞.

Lemma 3.3.5. For all X, it holds true that

lim
N→∞

∥∥fNL (X)
∥∥ <∞ ⇐⇒ σ

(√
(1− %)A

)
< 1

lim
N→∞

∥∥gNL (X)
∥∥ <∞ ⇐⇒ σ

(√
(1− %)A

)
< 1

where σ (A) is the spectral radius of A.

We are now ready to present the proof of Theorem 3.3.1.

Proof of Theorem 3.3.1. By (3.28) we have that

lim
N→∞

‖ΨN‖ <∞ ⇐⇒ lim
N→∞

∥∥gN
L̄

(Ψ0)
∥∥ <∞. (3.29)

By Lemma 3.3.5 we have that

lim
N→∞

∥∥gN
L̄

(Ψ0)
∥∥ <∞ ⇐⇒ lim

N→∞

∥∥gN
L̄

(X)
∥∥ <∞ ∀X (3.30)

if and only if all eigenvalues of
√

1− %A are strictly within the unit circle. By Lemma 3.3.4 it
follows that

lim
N→∞

∥∥gN
L̄

(X)
∥∥ <∞ ⇐⇒ lim

N→∞

∥∥fN
L̄

(X)
∥∥ <∞ ∀X. (3.31)

Since this holds for all X, it also holds for Q. Thus, from Lemma 3.3.3 we have that

lim
N→∞

∥∥fN
L̄

(Q) <∞
∥∥ ⇐⇒ lim

N→∞
‖SN‖ <∞. (3.32)

Equivalence between Items 1 and 2 then follows by combining (3.29) to (3.32). The necessary
and sufficient condition in Item 3 follows directly from Lemma 3.3.5. Then, combining the results
in Theorem 3.3.1 and Lemmas 3.3.3 and 3.3.5 and the fact that S̄ , limk→∞ Sk establishes the
equivalence between Items 1 to 3 and Item 4.

3.3.2 Offline estimator

For the estimator, we show that the convergence of (3.16) is necessary and sufficient for MSS
of the offline estimator. This is done by reformulating the estimator design as a dual controller
design problem. Also, we reformulate the offline estimator MSS condition as a dual controller MSS
condition.

First, define the estimation error of the offline estimator (3.21) by

ek , xk − x̂k
= Axk−1 + ωk−1 −

((
A− γk−1K̄C

)
x̂k−1 + γk−1K̄yk−1

)
.
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3. Duality for control and estimation for systems with i.i.d. packet losses

Controller A B Q R % ρk LN−k,N Sk L̄ S̄ xk ωk
Estimator AT CT Σω Συ µ γk KT

k,N Pk K̄T P̄ ek ωk + γkK̄υk

Table 3.1: Substitutions to formulate the estimator as a dual controller or vice versa.

By (3.1) we have that yk = γk (Cxk + υk). Inserting this in the above, collecting the terms and
noting that γ2

k = γk results in the recursion

ek =
(
A− γk−1K̄C

)
(xk−1 − x̂k−1) + ωk−1 − γk−1K̄υk−1

=
(
A− γk−1K̄C

)
ek−1 + ωk−1 − γk−1K̄υk−1. (3.33)

The error covariance of the offline estimator is given by

Υk , E
{
eke

T
k

}
. (3.34)

The following result shows that the boundedness of the solution to the estimator Riccati equa-
tion (3.16) as k → ∞ is necessary and sufficient for MSS of the offline estimator (3.21). Further,
it links the existence of the solution to (3.16) with the eigenvalues of the system matrix A and the
optimal solution to the infinite horizon cost function (3.19).

Theorem 3.3.6. Consider Pk from (3.16) and the pair (C,A) detectable. Then, the following
conditions are equivalent:

1. The second moment of the prediction error of the offline estimator (3.21) is bounded as
k →∞ i.e.

lim
k→∞

‖Υk‖ <∞.

2. The estimator Riccati equation (3.16) is bounded as k →∞ i.e.

lim
k→∞

‖Pk‖ <∞.

3. All eigenvalues of
√

1− µA are strictly within the unit circle.

4. The offline estimator scheme (3.21) minimizes the cost (3.18) i.e.

V ? = V
(
K̄∞

)
.

Theorem 3.3.6 shows that the offline estimator is MSS if and only if there exists a solution
to the estimator Riccati equation (3.16). It also shows, that the offline estimator minimizes the
infinite horizon cost (3.19). The proof of Theorem 3.3.6 is deferred to Section 3.3.2.2.

3.3.2.1 Duality

Before showing the proof of Theorem 3.3.6, we establish a form of duality between the offline
estimator and the controller. This allows one to formulate the estimator into a dual controller
and vice-versa. The dual formulation can be obtained using the mappings that are presented in

32



3.3. Stability results

Table 3.1. For example, using the mappings from Table 3.1, the controller Riccati equation (3.7)
becomes the estimator Riccati equation (3.16) and the control gain (3.6) becomes the estimator
gain (3.15). Thus, the optimal offline estimator can be obtained by formulating the estimator
design problem into a dual controller design and compute the control Riccati equation (3.7) and
control gain (3.6). The obtained control gain (3.6) can then be mapped to the offline estimator
gain (3.15) using the maps in Table 3.1. Similarly, the optimal controller can be obtained by
formulating a dual estimator problem using the mappings in Table 3.1.

Also, an interesting observation is, that the estimator error dynamics from (3.33),

ek =
(
A− γk−1K̄C

)
ek−1 + ωk−1 − γk−1K̄υk−1

can, using the mappings in Table 3.1, be reformulated to the dual closed-loop dynamics of the
controller. This results in

xk =
(
AT − ρk−1L̄

TBT
)
xk−1 + ωk−1

=
(
A− ρk−1BL̄

)T
xk−1 + ωk−1,

which is on the same form as (3.12).

3.3.2.2 Proof of Theorem 3.3.6

To prove the result that is presented in Theorem 3.3.6, we first show that the estimator Riccati
equation (3.16) can be stated as a map that depends on the optimal estimator gain (3.15). We
then show that also the error covariance of the offline estimator (3.34) can be stated using the
same Riccati map using the offline estimator gain (3.20). We then, using the substitutions from
Table 3.1 establish duality between the estimator and controller Riccati equations. The proof of
Theorem 3.3.6 is then done by combining these results.

First, define the map

hK (P ) , (1− µ)APAT + µ (A−KC)P (A−KC)T + Σω + µKΣυKT . (3.35)

The relation to the estimation Riccati equation and the map (3.35) is stated in the following
lemma.

Lemma 3.3.7. The optimal error covariance for the estimator is given by

Pk+1 = hK?
k,N

(Pk) , (3.36)

where K?
k,N is defined in (3.15). Also,

Υk+1 = hK̄ (Υk) . (3.37)

Proof. The proof is found in Appendix 3.C.

Corollary 3.3.8. When using the substitutions from Table 3.1 in (3.26), it follows directly that

hN
K̄

(Pk) = fN
K̄T (Pk) ∀N, k.
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3. Duality for control and estimation for systems with i.i.d. packet losses

Corollary 3.3.8 establishes duality between the offline estimator map hK̄ and the controller
map fL̄ for the dual control system.

We are now ready to state the proof for Theorem 3.3.6. This proof utilizes the duality between
the estimator and controller.

Proof of Theorem 3.3.6. By Lemma 3.3.7 we have

Υk = hK̄ (Υk−1)

= hk
K̄

(Υ0)

for any Υ0 > 0. Thus,

lim
k→∞

‖Υk‖ <∞ ⇐⇒ lim
k→∞

∥∥hk
K̄

(Υ0)
∥∥ <∞. (3.38)

By Corollary 3.3.8 it follows directly that

lim
k→∞

∥∥hk
K̄

(Υ0)
∥∥ <∞ ⇐⇒ lim

k→∞

∥∥fk
L̄

(Υ0)
∥∥ <∞. (3.39)

Then, by Lemma 3.3.4

lim
k→∞

∥∥fk
L̄

(Υ0)
∥∥ <∞ ⇐⇒ lim

k→∞

∥∥gk
L̄

(Υ0)
∥∥ <∞. (3.40)

Since this holds for any Υ0 > 0 it must also hold for Υ0 = P0. It then follows by Theorem 3.3.1
that

lim
k→∞

∥∥gk
L̄

(P0)
∥∥ <∞ ⇐⇒ lim

k→∞
‖Sk‖ <∞. (3.41)

Finally, using the substitutions in Table 3.1 we have that

Sk = Pk. (3.42)

The equivalence between Items 1 and 2 then follows by combining (3.38) to (3.41) and substituting
(3.42). By the duality that was established in Corollary 3.3.8, the equivalence in Items 3 and 4
and their link to Items 1 and 2 follows directly by Lemmas 3.3.2 and 3.3.4.

3.4 Convergence of the Riccati equation

In Section 3.3 we showed that the boundedness of the Riccati equations (3.7) and (3.16) is nec-
essarily and sufficient for MSS of the closed-loop control system or estimator. While we for the
ease of exposure discuss the results for the estimator, they hold true for the controller due to the
duality. Item 3 in Theorem 3.3.6 states that convergence of the Riccati equation requires that

∣∣∣σ
(√

(1− µ)A
)∣∣∣ < 1.

What would be interesting here, is to find the bound on µ for which a solution to (3.16) exists.
It is worth noting that the form of the Riccati equations (3.7) and (3.16) are similar to the

expression that the authors of [104] use to determine an upper bound for the performance of their
online Kalman filter. The results on these bounds can therefore be applied directly on (3.7) and
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3.5. Simulations

(3.16). The authors of [104] found that if the unstable poles can be canceled such that A−K̄C = 0,
the lower bound on µ for which a solution to (3.16) exists, is given by

¯
µ = 1− 1

σ (A)2 . (3.43)

When multiple unstable poles are present and C is not invertible, it is more difficult to find
bounds on µ. The work [104] presented a numerical method to find the bound on µ by solving a
semi-definite program (SDP).

The more recent work [102] stated an analytical expression to find
¯
µ. The idea is to split the

unstable subspace of A and C into partitions. Each partition is defined by a triple (A,C, In),
where we for each In = {i1, · · · , i`}, where 1 ≤ i1 < i2 < · · · < i` ≤ n, have the partitioned
matrices A (In) and C (I). Here, the matrix A (In) is constructed by selecting a block diagonal
part of A by selecting the elements A (i, j) where i, j ∈ In. Also, C (In) = [Ci1 , · · · , Ci` ]. In total
it is, for a n×n unstable subspace of A, possible to construct 2n−1 different partitions. It is then
possible to find a bound on µ for each of these partitions. The bound on µ for the system (3.1) is
then found by the maximum

¯
µ of the sub systems. This is given by the expression

¯
µ = max

In


1− 1

r(In)
√∣∣Āu (In)

∣∣2


 , (3.44)

where

r (In) , rank
{
C̄u (In)

}
.

Note that with only one unstable eigenvalue in A, (3.43) equals (3.44).

3.5 Simulations

In this section, we illustrate the presented concepts in a numerical example where we separately
design a controller and estimator. We design the estimator by formulating the estimation problem
into a dual control problem. We also compare the performance of the offline estimator to the online
Kalman filter and the JLS pseudo-offline design [108]. We consider the following system dynamics

A =




1.2 1 0
0 0.9 1
0 0 0.6




with the eigenvalues given on the diagonal,

B =
[
0 0 1

]T

C =
[
1 0 1

]
.

Notice that the pairs (A,B) and
(
AT , CT

)
are both fully controllable. Further let Σω = I3, where

In is the n × n identity matrix, and Συ = 1. Packet dropouts are acknowledged, such that the
estimator at time k knows both ρk and γk.
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Figure 3.3: The cost xTkQxk + uTkRuk for the controller for different %. The lower bound
¯
%,

calculated using (3.43), is plotted with the dashed line. The classical LQR that does not take
packet dropouts into account is shown for comparison

3.5.1 Controller

We first design the controller. Since there is only one unstable pole in A, we can use (3.43) to
find the bound

¯
% = 0.3059. This means that it is not possible to find a stabilizing controller if

% < 0.3059. The performance of the controller for different % is shown in Figure 3.3. The results are
obtained by averaging over 1000 simulations each of 1000 time-steps.. As expected, the optimal
controller from Proposition 3.2.1 and the classical LQR perform identical for % = 1. However,
when % decreases, the performance of the classical LQR degrades significantly. The classical LQR
can no longer maintain stability for % < 0.55. On the other hand, the optimal LQR that takes
the packet dropouts into account is able to maintain stability until % reaches the lower bound

¯
%.

The performance of the optimal LQR that takes the packet dropouts into account is significantly
better than the classical LQR. Even at % = 0.58, where the classical LQR reaches a cost larger
than 10 000, the cost of the proposed design is merely 206. Also observe how the cost diverges as
% approaches the lower bound

¯
%.

As an example of the controller design. Consider the success probability % = 0.5, and the
parameters Q = I3 and R = 0.1. This results in the control gain

L̄ =
[
0.3422 0.9728 1.3638

]
,

which gives closed-loop eigenvalues located at 0.6677± 0.045j and 0.0007.

3.5.2 Estimator

We design the estimator by reformulating it as a dual control problem, as explained in Sec-
tion 3.3.2.1. It is straightforward to see that in this case

¯
µ =

¯
% = 0.3059.
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Figure 3.4: The cost eTk ek in dB for the different estimators for varying µ. The dashed horizontal
line illustrates the lower bound

¯
µ, calculated using (3.43).

The performance of the offline estimator for different values of µ is shown in Figure 3.4. Here

¯
µ is marked with the dashed line. The performance for the online Kalman filter [104] and for JLS
with a loss horizon of length 2 [108] are plotted as well for comparison. Note that the JLS with
horizon 1 would result in exactly the same performance as the offline estimator. It is worth noting
that, while for small values of µ the Kalman filter and JLS estimator perform significantly better
than the offline estimator, the performance difference decreases significantly as µ increases.

As an example for the estimator design. Consider a success probability of µ = 0.5. This results
in the estimator gain

K̄ =
[
1.3468 0.1622 0.007

]T
,

which results in closed-loop eigenvalues at 0.6693± 0.0959j and 0.0075.

3.6 Summary

We established a new link between the design of an offline estimator and a LQR controller for
systems affected by packet loss that is modelled by i.i.d distributions. We have designed an
estimator and a controller, both being offline in the sense of minimizing a cost function based solely
on system and channel statistics, and therefore minimizing the amount of online computations.
We have pointed out the duality of these two designs which permits the estimator design for a
given system to be performed by formulating a dual system, and then design a controller for the
latter. We have therefore extended the classical duality that exists between a LQR and a Kalman
filter to the case of systems that are affected by random packet loss.
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3. Duality for control and estimation for systems with i.i.d. packet losses

Appendix

3.A Proof of Proposition 3.2.1

Denote the optimal cost J?N (x0) , J (x0,L?N ). Note that with controls of the form uk = −Lk,Nxk,
the closed-loop system becomes xk+1 = (A− ρkBLk,N )xk + ωk. Then, for any 1 < n ≤ N ,

J?N (x0) = min
(L0,N ,··· ,LN−1,N )

1
N

E
{
N−(n−1)∑

k=0
‖xk‖2Q + ‖ρkLk,Nxk‖2R + nJ?n (xN−n)

∣∣∣∣∣x0

}
,

where

J?0 (xN ) = E
{
‖xN‖2Q

∣∣∣xN
}

J?1 (xN−1) = min
LN−1,N

E
{
‖xN−1‖2Q + ‖ρN−1LN−1,NxN−1‖+ J?0 (xN )

∣∣∣xN−1

}

and for 2 ≤ k ≤ N

J?k (xN−k) = 1
k

min
Lk,N

E
{
‖xk‖2Q + ‖ρkLkxk‖+ (k − 1) J?k−1 (xN−k+1)

∣∣∣xk
}
.

The argument then proceeds by induction. In step 0, we obtain

J?0 (xN ) = E
{
‖xN‖2Q

∣∣∣xN
}

= xTNQxN .

Then, at step n− 1, where 2 ≤ n < N , we assume that there exist Sn−1 and Yn−1 such that

J?n−1
(
xN−(n−1)

)
= 1
n− 1

(
xTN−(n−1)Sn−1xN−(n−1) + Yn−1

)
,

where S0 = Q and Y0 = 0. Then, at step n we have

Jn
(
xN−n,

(
LN−n,N , L

?
N−n+1,N , · · · , L?N−1,N

))
=

= 1
n

E
{
‖xN−n‖2Q + ‖ρN−nLN−n,NxN−n‖2R + (n− 1) J?n−1 (xN−n+1)

∣∣∣xN−n
}

= 1
n

E
{
xTN−nQxN−n + ρ2

N−nx
T
N−nL

T
N−N,NRLN−n,NxN−n

+ (n− 1) J?n−1 ((A− ρN−nBLN−n,N )xN−n + ωN−n)
∣∣∣xN−n

}

= 1
n
xTN−n

(
%LTN−n,N

(
R+BTSn−1B

)
LN−n,N − %LTN−n,NBTSn−1A+ %ATSn−1BLN−n,N

+Q+ATSn−1A
)
xN−n + 1

n

(
trace (ΣωSn−1) + Yn−1

)
.

Let M , %
(
R+BTSn−1B

)
and add and subtract xTN−n

(
%2ATSn−1BM

−1BTSn−1A
)
xN−n to

the above. Rewriting this results in

Jn
(
xN−n,

(
LN−n,N , L

?
N−n+1,N , · · · , L?N−1,N

))

= 1
n
xTN−n

(
Q+ATSn−1A− %2ATSn−1BM

−1BTSn−1A

+
(
M

1
2LN−n,N − %M−

1
2BTSn−1A

)T (
M

1
2LN−n,N − %M−

1
2BTSn−1A

))
xN−n

+ 1
n

(
trace (ΣωSn−1) + Yn−1

)
.
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Clearly, the above is minimized when
(
M

1
2LN−n,N − %M−

1
2BTSn−1A

)
= 0.

Solving this for LN−n,N results in

L?N−n,N = %M−1BTSn−1A

=
(
R+BTSn−1B

)−1
BTSn−1A.

Then, the minimum cost is given by

J?n (xN−n) = 1
n
xTN−n

(
Q+AT

(
Sn−1 − %Sn−1B

(
R+BTSn−1B

)−1
BTSn−1

)
A

)
xN−n

+ 1
n+ 1

(
trace (ΣωSn−1) + Yn−1

)

= 1
n

(
xTN−nSnxN−n + Yn

)
,

where Sn is given in (3.7) and

Yn =
n−1∑

`=0
trace (ΣωS`) .

Proceeding as in the above, one obtains the optimal cost

J?N (x0) = 1
N
xT0 SNx0 + 1

N

N−1∑

`=0
trace (ΣωS`) .

When letting N →∞, the cost becomes

J?∞ = lim
N→∞

J?N (x1)

= lim
N→∞

(
1
N
xT1 SNx1 + 1

N

N−1∑

`=0
trace (ΣωS`)

)
, (3.A.1)

where, provided that limN→∞ SN exists, the first term in (3.A.1) goes to zero. This results in

J?∞ = lim
N→∞

1
N

∞∑

`=0
trace (ΣωS`)

= trace
(
ΣωS̄

)

where S̄ is the asymptotic solution to (3.8).

3.B Proof of Proposition 3.2.2

Define the estimation error at time k by

ẽk , xk − x̃k.

Then, the cost (3.14) at time k = 0 is given by

E (K0) = E
{
‖ẽ0‖22

}
= ‖E {ẽ0}‖22 = trace

(
E
{
ẽ0ẽ

T
0
})
.
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Now since x̂0 , E {x0} = 0, we have that

E? = trace
(
E
{
x0x

T
0
})

= trace (P ) .

Define

Pk , E
{
ẽkẽ

T
k

}
,

where

Pk+1 = E
{
ẽk+1ẽ

T
k+1
}

= E
{(

(A− γkKkC) ẽk + ωk − γkKkυk

)(
(A− γkKkC) ẽk + ωk − γkKkυk

)T}

= E
{

(A− γkKkC) ẽkẽTk
(
AT − γkCTKT

k

)
+ ωkω

T
k + γ2

kKkυkυ
T
kK

T
k

}

= APkA
T + Σω︸ ︷︷ ︸
W

+Kkµ
(
CPkC

T + Συ
)

︸ ︷︷ ︸
M

KT
k − µAPkCTKT

k − µKkCPkA
T

= W +KkMKT
k − µAPkCTKT

k − µKkCPkA
T .

By adding and subtracting µ2APkC
TM−1CPkA

T on the right hand side of the last equation, we
obtain

Pk+1 = W +
(
KkM

1
2 − µAPkCTM−

1
2

)(
KkM

1
2 − µAPkCTM−

1
2

)T

− µ2APkC
TM−1CPkA

T . (3.B.1)

Here trace (Pk+1) is minimized with respect to Kk when the term

0 =
(
KkM

1
2 − µAPkCTM−

1
2

)(
KkM

1
2 − µAPkCTM−

1
2

)T
.

This occurs only if

0 = KkM
1
2 − µAPkCTM−

1
2

Kk = µAPkC
TM−1

= APkC
T
(
CPkC

T + Συ
)−1

,

which is (3.15), and (3.16) follows directly from (3.B.1).
Now, since Pk+1 is a function of Pk, we have that if limk→∞ Pk <∞, then the stationary cost

given by

V (K?∞) = lim
k→∞

trace (Pk)

= trace
(
P̄
)
,

where P̄ is the asymptotic solution to (3.17)

3.C Proof of lemmas in Section 3.3

Proof of Lemma 3.3.2. From (3.7), we have

Sk+1 = Q+ (1− %)ATSkA+ %M, (3.C.1)
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where

M = ATSkA−ATSkB
(
R+BTSkB

)−1
BTSkA

= ATSkA−ATSkB
(
R+BTSkB

)−1 (
R+BTSkB

) (
R+BTSkB

)−1
BTSkA. (3.C.2)

To simplify notation in this proof, define

LSk
, L?N−k−1,N k = 0, · · · , N − 1, (3.C.3)

where Lk,N is the control gain (3.6). Substituting (3.C.3) into (3.C.2) results in

M = ATSkA− LTSk

(
R+BTSkB

)
LSk

. (3.C.4)

Also with HLSk
, A−BLSk

we have that

ATSkA =HT
LSk

SkHLSk
− LTSk

BTSkBLSk
+ATSkBLSk

+ LTSk
BTSkA (3.C.5)

and

ATSkBLSk
= LTSk

(
R+BTSkB

)
LSk

. (3.C.6)

Inserting (3.C.5) and (3.C.6) into (3.C.4) yields

M = HT
LSk

SkHLSk
+ LTSk

RLSk
.

Replacing the above into (3.C.1) leads to

Sk+1 = (1− %)ATSkA+ %HT
LSk

SkHLSk
+Q+ %LTSk

RLSk

= fLSk
(Sk),

and the result follows by substituting (3.C.3) in the above.

For the next result, define for any X ≥ 0

L? , arg min
L

trace (fL (X))

L?N , arg min
LN

trace
(
fNLN

(X)
)

such that

trace (fL? (X)) = min
L

trace (fL (X))

trace
(
fNL?

N
(X)

)
= min
LN

trace
(
fNLN

(X)
)
.

It follows directly from (3.C.3) and Proposition 3.2.1 that

fL? (Sk) = fLSk
(Sk)

= fL?
N−k−1,N

(Sk)

fNL?
N

(Q) = SN .

We can now present the next result. This results shows that fL (X) in (3.26) is monotonic, and is
needed later.
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3. Duality for control and estimation for systems with i.i.d. packet losses

Lemma 3.C.1. For 0 ≤ X ≤ Y , it holds true that 0 ≤ fL? (X) ≤ fL? (Y ), and for all N , it holds
true that 0 ≤ fNL?

N
(X) ≤ fNL?

N
(Y ).

Proof. Denote LX , arg minL trace (fL (X)). Then, it follows from Proposition 3.2.1 and Lemma 3.3.2
that

fL? (X) = fLX
(X) ≤ fL (X) ∀L.

Also notice that, for all L

fL (X) ≤ fL (Y ) .

Putting this together yields

fL? (X) = fLX
(X) ≤ fLY

(X) ≤ fLY
(Y ) = fL? (Y ) .

It then follows immediately that this holds true for all N .

Proof of Lemma 3.3.3. By (3.26) it is easy to verify that for 0 ≤ Q

Q ≤ fL? (Q) ,

and therefore by Lemma 3.C.1 also for all N

Q ≤ fN−1
L?

N−1
(Q) ≤ fNL?

N
(Q) . (3.C.7)

Also, since

S̄ , lim
k→∞

Sk = lim
N→∞

fNL?
N

(Q) , (3.C.8)

we have that Q ≤ S̄. It is easy to verify that for all N , S̄ = fN
L̄

(
S̄
)

where L̄ is defined in (3.10).
Then, by (3.C.7) and Lemma 3.C.1 we have that for all N ,

fNL?
N

(Q) ≤ fN
L̄

(Q) ≤ fN
L̄

(
S̄
)
. (3.C.9)

This must therefore also hold on the limit. Combining (3.C.8) and (3.C.9) and taking the limits
yields

S̄ = lim
N→∞

fNL?
N

(Q) ≤ lim
N→∞

fN
L̄

(Q) ≤ lim
N→∞

fN
L̄

(
S̄
)

= S̄,

and the result follows.

Proof of Lemma 3.3.4. Using properties of the Kronecker product, we can state

vec (fL (X)) = FL vec (X) + vec (KL) (3.C.10)

vec (gL (X)) = GL vec (X) + vec (M) ,

where KL , Q + %LTRL, M ≥ 0 and vec (.) denotes the operation of converting a matrix into a
vector by stacking its columns. The matrices

FL , (1− %)
(
AT ⊗AT

)
+ %

(
HT
L ⊗HT

L

)
(3.C.11)

GL , (1− %) (A⊗A) + % (HL ⊗HL) .
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Also,

vec
(
fNL (X)

)
= FNL vec

(
fN−1
L (X)

)
+ vec (KL)

= FNL vec (X) +
N−1∑

n=0
FnL vec (KL) .

As N →∞, the above is bounded if and only if FNL tends to zero. The result then follows since

FL = GTL.

Proof of Lemma 3.3.5. For all N and all X ≥ 0 we have from (3.C.10) that

vec
(
fNL (X)

)
= FNL vec (X) +

N−1∑

n=0
FnL vec (KL) .

Taking the limit yields

lim
N→∞

vec
(
fNL (X)

)
= lim
N→∞

FNL vec (X) + lim
N→∞

N−1∑

n=0
FnL vec (KL) .

Here the first part on the right hand side goes to zero if and only if limN→∞ FNL = 0 and the
second part on the right hand side converges to vec (KL) if and only if limN→∞ FNL = 0. This
requires all eigenvalues of FL to be within the unit circle. By the definition of FL in (3.C.11), this
is equivalent to all eigenvalues of

√
(1− %)A being inside the unit circle. The result for gNL follows

by Lemma 3.3.4.

Proof of Lemma 3.3.7. Using the substitutions from Table 3.1 in (3.7), the control Riccati equation
becomes the estimator Riccati equation (3.16) and the map f (defined in (3.26)) turns into h.
Equation (3.36) then follows directly from Lemma 3.3.2.

To show (3.37), observe that

Υk+1 = E
{
ek+1e

T
k+1
}

= E
{((

A− γkK̄C
)
ek + ωk − γkK̄υk

) ((
A− γkK̄C

)
ek + ωk − γkK̄υk

)T}

= E
{(
A− γkK̄C

)
eke

T
k

(
A− γkK̄C

)T + ωkω
T
k + γkK̄υkυ

T
k K̄

T
}

= E
{

(1− γk)AekeTkAT + γk
(
A− K̄C

)
eke

T
k

(
A− K̄C

)T + ωkω
T
k + γkK̄υkυ

T
k K̄

T
}

= (1− µ)AE
{
eke

T
k

}
AT + µ

(
A− K̄C

)
E
{
eke

T
k

} (
A− K̄C

)T + E
{
ωkω

T
k

}

+ µK̄ E
{
υkυ

T
k

}
K̄T

= (1− µ)AΥkA
T + µ

(
A− K̄C

)
Υk

(
A− K̄C

)T + Σω + µK̄ΣυK̄T

= hK̄ (Υk) ,

which is exactly what is stated in (3.37).
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Chapter 4

Control over networks with correlated packet
losses

In this chapter, we consider the controller design for networked control systems (NCSs) that
feature more complex network models than in Chapter 3. The limitation of the independent and
identically distributed (i.i.d) network model that we considered in Chapter 3, is that it can not
capture network effects that contain memory, such as fading, congestion, interference, etc. For this
reason, we consider network models that can be modelled using correlated distributions. By taking
these correlated network models into account directly in the controller design allows for an optimal
controller that is tailored to the network. As we will show, the optimal controller design results in
controllers that depend on the packet arrival sequences. This means, that for every possible packet
arrival sequence, there will be a (unique) controller. The framework that we present in this chapter
can be utilized for the controller design for any network that can be modelled using conditional
distributions. However, if the conditional distributions depend on a long packet arrival sequence,
the proposed method will result in a large number of controllers. This can be impractical on small
embedded systems with limited storage space or limited computational resources. We therefore
present three methods that will reduce the amount of controllers while trading off performance
compared to the optimal design.

This chapter is structured as follows: In Section 4.1 we present the motivation for the controller
design for the correlated network models. This includes a review of relevant existing work on both
controller design and network modeling. In Section 4.2, we present the system and network models,
where we then present the optimal controller design in Section 4.3. Next, we present three methods
to reduce the controller complexity in Section 4.4. In Section 4.5, the performance of the presented
controllers is benchmarked against a traditional linear quadratic regulator (LQR) controller and
the controller design from Section 3.2.1 that only considers i.i.d network models. Section 4.6
summarizes the results presented in this chapter.

4.1 Introduction

In Chapter 3 we showed that, compared to traditional LQR, significant performance gains can be
achieved when the network model is directly taken into account in the controller design. However,
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4. Control over networks with correlated packet losses

since the network model is taken into account, the performance of the controller is highly depen-
dent on how accurately the network model represents the real network that will be used in the
NCS. Traditionally, as done in Chapter 3 and explained in Section 2.2.2, i.i.d models are used.
These models are however very limited in representing realistic networks, since the i.i.d model of
the packet dropouts assume that the network contains no memory. That is, no burst dropouts,
congestion or fading effects are captured. Further, moving objects within a NCS can result in
significant variations of the channel quality, which can not be captured by i.i.d models. [1], [34].
To address this issue, Gilbert and Elliot [33], [54] introduced the first-order Gilbert-Elliot Markov
model that is described in Section 2.2.2. The Gilbert-Elliot model is also considered for controller
design, see for example [21], [70], [80], [109], [129]. However, the two-state Gilbert-Elliot model
still relies on that channel quality does not vary dramatically [12], [51]. This can be addressed to
some extent by increasing the order of the Markov model [51], [95], [119], [122]. As explained in
Section 2.2.2, the network state in Gilbert-Elliot Markov models can generally not be observed by
the users of the network. The work [51] presents a different approach. Here the network is divided
in two states: one where no packet loss occurs, and one where packet loss occurs. In [51], the “bad”
state of the network is modelled using a fourth-order finite state Markov chain (FSMC) model.
Unlike the Gilbert-Elliot model, in the FSMC model, the network state depends on a finite history
of recent packet arrivals. This means that users can observe the network state by monitoring
packet transmission outcomes. Higher order packet loss models tend to provide a more accurate
fit for wireless networks [51], [95], [119], [122]. For this reason, we propose a controller design for
systems where the link between the controller and actuator can be modelled by any conditional
distribution. This allows the proposed framework to be used for any order Markov models. It also
follows, that the proposed framework generalizes the controller design for the Gilbert-Elliot model
and the i.i.d model that is presented in Chapter 3. Further, the proposed controller design can
be used in conjunction with a traditional LQR to provide an optimal controller for the network
model that is presented in [51]. In this case, one would use the LQR for the network state with
no packet loss, and switch to the proposed controller as soon as packet dropouts occur.

The optimal controller design is, as in Chapter 3, done by minimizing a quadratic cost function
that penalizes future states and control inputs. In the design, the future system states are predicted
using the models of both the system and the network, as well as the current state and the history
of packet arrivals. This results in a control law that is a function of the state and packet arrival
history. A key issue is that, at the time when a control input is computed, the controller does not
know whether this input will actually reach the actuator. Such a design problem can fit into the
Markov jump linear system framework by assuming that the packet transmission at the current
time will be successful [19], [23], [31], [70], [115]. The difference in our approach is, that we take
advantage of the structure of the Markov transition matrix, which results in simpler expressions.
Designing the control law in this manner leads to controllers that depend on the system state and
on the history of packet dropouts. This results in a controller for every possible observation of
packet dropouts, which results in high complexity control laws (meaning: many controllers). The
complexity increases exponentially for longer packet dropout histories. It also requires significant
amounts of memory to be stored in a lookup table e.g. in microcontrollers. At this point one
might ask, whether it is necessary to take the entire packet arrival history into account when
designing the control law. To tackle this question, we investigate sub-optimal reduced complexity
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u û Plant

x

ω

Controller

ρ

Lossy network

Figure 4.1: The system where the controller and the actuators are connected through a link that
is affected by packet dropouts.

control laws, that feature fewer controllers, and illustrate the loss of performance compared to a
full complexity control law through simulation studies. While there exists an extensive literature
on performance and complexity trade-offs in terms of minimizing a cost function for estimation
over networks with correlated packet dropouts [27], [108], the controller design has rarely been
considered in this setting. One main difference between the estimator and controller design is that
the network is part of a closed-loop system. This makes the controller design more difficult.

4.2 Problem setting

We consider a linear time-invariant system where the controller is connected to the actuators
through a network that is affected by correlated packet losses. The system is illustrated in Fig-
ure 4.1 and has dynamics

xk+1 = Axk +Bûk + ωk,

ûk = ρkuk
(4.1)

whereA ∈ Rn×n, B ∈ Rn×m and ωk ∼ N (0,Σω) is zero-mean white Gaussian noise with covariance
Σω. The binary variable ρk ∈ {0, 1} indicates whether the packet at time k is successfully received
at the actuator.

The packet arrivals for the model in (4.1) are random and correlated. This means that the
probability for the packet at time k to arrive, depends on the history of previously transmitted
packets. In this work, we consider the case where the relevant length of the previous history is of
a given length. More formally, we can state this as

Pr {ρk = 1|ρk−1, · · · , ρk−∞} = Pr {ρk = 1|ρk−1, · · · , ρk−d} ,

where 0 ≤ d <∞ is the length of the relevant history. In the present setting, the controller always
receives acknowledgements on successful packet transmissions, and therefore causally knows the
exact packet arrival history. Note that the current model generalizes the i.i.d model that we used
in Chapter 3, since the i.i.d model corresponds to a history of length 0. To simplify the notation,
we accumulate the history of packet dropouts in the variable Θk ∈ Ξ =

{
1, · · · , 2d

}
to denote the

binary sequence (ρk−1, · · · , ρk−d), where Θk = i refers to a certain realization of (ρk−1, · · · , ρk−d).
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To obtain this, we assign the outcomes of ρk to values of Θk by

Θk , 1 +
d∑

`=1
ρk−`2d−`. (4.2)

This means that for example, the packet arrival sequence (1, 0, 0, 1) gets assigned to

Θ = 1 + 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20 = 10.

Note that in (4.2), every possible binary sequence (ρk−1, · · · , ρk−d) gets assigned to a unique value
of Θ. Also, note that

ρk−1 =
{

0, if Θk ≤ r
1, if Θk > r,

(4.3)

where r = 2d−1. Here we find that Θk is first-order Markov, since

Pr {Θk+1 = j|Θk = i,Θk−1, · · · ,Θ0}
= Pr {Θk+1 = j|Θk = i}
, pi,j .

Also, denote Pr {Θk = i} , πi.
If for a known packet arrival sequence Θk = i the packet arrival ρk = 1, then the value of

Θk+1 = φ (Θk). Here the function φ : Ξ→ {r + 1, · · · , d} and is given by

φ (i) =
⌈
i

2

⌉
+ 2d−1 ∈

{
r + 1, · · · , 2d

}
. (4.4)

Likewise when at time k the packet arrival history is given by Θk = i and the packet transmission
failed (ρk = 0), Θk+1 = φ̄ (i), where φ̄ : Ξ→ {1, · · · , r} and is given by

φ̄ (i) =
⌈
i

2

⌉
∈ {1, · · · , r} . (4.5)

It hereby follows that

Pr {ρk = 1|Θk = i} = Pr {Θk+1 = φ (i)|Θk = i} , pi,φ(i),

and

Pr {ρk = 0|Θk = i} = Pr
{

Θk+1 = φ̄ (i)
∣∣Θk = i

}
, pi,φ̄(i) = 1− pi,φ̄(i).

Example 4.2.1. Consider the case of a packet dropout distribution with d = 2. This means that
the probability for a successful transmission at time k depends on the outcomes of ρk−1 and ρk−2.
This is illustrated in Figure 4.2. The Markov states Θ ∈ Ξ, where Ξ = {1, 2, 3, 4} are assigned
using (4.2). The states are illustrated in gray in Figure 4.2. This can be put into a transition
matrix as
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(0, 0) (0, 1)

(1, 0) (1, 1)

Θ = 1 Θ = 2

Θ = 3 Θ = 4

p1,1 p2,1

p1,3
p3,2

p2,3
p4,2

p4,4p3,4

Figure 4.2: Illustration of the assignment of Θ to packet arrival sequences (ρk−1, ρk−2) by
(4.2). Here the sequence (1, 0) means that ρk−1 = 1 and ρk−2 = 0. The probability p2,1 =
Pr {Θk+1 = 1|Θk = 2} = Pr {ρk = 0|ρk−1 = 0, ρk−2 = 1}.

P =

ρk=0︷ ︸︸ ︷ ρk=1︷ ︸︸ ︷
Θ = 1 Θ = 2 Θ = 3 Θ = 4






p1,1 0 p1,3 0 Θ = 1
p2,1 0 p2,3 0 Θ = 2
0 p3,2 0 p3,4 Θ = 3
0 p4,2 0 p4,4 Θ = 4

where p1,3 = Pr {ρk = 1|ρk−1 = 0, ρk−2 = 0}. Here φ (1) = 3 and φ̄ (1) = 1, thus p1,φ(i) = p1,3.

4.3 Optimal predictive controller design

We utilize predictive control to design a control law that minimizes a receding horizon cost function
which penalizes predicted future states and controls, as is done in LQR design. The system (4.1)
is however affected by random packet dropouts and noise, which are only known for the past, and
not the current and future times. We therefore formulate the cost function using the expectation
operator, where the expectation is taken over the packet dropout process ρk and the process noise
ωk. When minimizing the cost function using dynamic programming, we obtain feedback control
policies as functions of the state and packet arrival history. The controller has at time k access to
the state xk and the Markov state Θk. We, thus, obtain controllers of the form

uk = fk (Θk, xk) , k = 0, 1, · · · , N − 1.

We want to design the control law to minimize the receding horizon cost function

JN (U0,N , x0,Θ0) = E
{
N−1∑

k=0
‖xk‖2Q + ρk‖uk‖2R + ‖xN‖2SN,ΘN

∣∣∣∣∣x0,Θ0

}
, (4.6)

where Q ≥ 0, R ≥ 0 and SN,i ≥ 0, ∀i ∈ Ξ are design parameters that trade-off control performance
vs. control effort, the sequence Uk,N , (u` : ` = k, · · · , N − 1) and the prediction horizon N ∈ N.

Remark 4.3.1. The problem that we presented here can be fitted into the general Markov jump
linear system framework, see e.g. [23]. The difference between the framework presented in [23] and
the current problem setting is, that we, in the current framework, at time k do not have the outcome
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4. Control over networks with correlated packet losses

of ρk available. However, with the framework that is presented in [23], the same control laws as
presented in Proposition 4.3.1 can be obtained by assuming that at time k the packet transmission
will always be successful.

In the rest of this section, the result that we present will differ from [23] on two points: 1. In
the presented setting, it is a consequence of the problem formulation that the optimal strategy is
to always design the control packet to assume that the current transmission is successful. 2. We
take advantage of the special sparse structure of the transition matrix P , which results in simpler
expressions, making it computationally more efficient.

Next, we present the optimal controller design.

Proposition 4.3.1. The optimal control at each time-step is given by the linear function

u?k = L?k,Θk
xk k = 0, · · · , N − 1, (4.7)

where

L?k,i = −
(
R+BTSk+1,φ(i)B

)−1
BTSk+1,φ(i)A ∀i ∈ Ξ, (4.8)

with

Sk,i = Q+AT
(
Sk+1,φ̄(i)pi,φ̄(i) + Sk+1,φ(i)pi,φ(i)

)
A

− pi,φ(i)A
TSk+1,φ(i)B

(
R+BTSk+1,φ(i)B

)−1
BTSk+1,φ(i)A, (4.9)

and φ (i) and φ̄ (i) defined in (4.4) and (4.5). Here, pi,φ(i) = Pr {Θk+1 = φ (i)|Θk = i} and SN,i

is given for all i ∈ Ξ. This results in the optimal cost

J?N (x0,Θ0) = xT0 S0,Θ0x0 + c0,Θ0 , (4.10)

where

ck,i =
∑

j={φ(i),φ̄(i)}
(trace (ΣωSk+1,j) + ck+1,j) pi,j (4.11)

with cN,i = 0 for all i.

Proof. The proof is given in Appendix 4.A.

It is worth to note from (4.8) that the control law at time k only depends on Θk for the
computation of Sk+1, which in turn depends on Θk+1. Now, since the transition probabilities to
go from Θk to Θk+1 are not used in (4.8), the value of Lk,i will not depend on ρk−d. Therefore,
only 2d−1 out of the 2d control laws are unique and need to be stored in a lookup table.

Remark 4.3.2. Many network models such as the Gilbert Elliot model [33], [54] (also referred
to as the pq model) use a Markov chain with length d = 1. It is worth noting that in this case
using Proposition 4.3.1 only one unique controller gain is obtained. This means that in this case,
the controller does not have to observe the history of the packet dropouts to find the appropriate
control gain.

50



4.3. Optimal predictive controller design

The results in Proposition 4.3.1 can be vectorized for a relevant history of length d by defining
the matrix

Vi,j ,




In
√
p(i+1),(j+1) 0n · · · 0n

0n 0n · · · 0n
0n In

√
p(i+3),(j+2) · · · 0n

0n 0n · · · 0n
...

... . . . ...
0n 0n · · · In

√
p(i+2d−1),(j+r)




∈ R(2d−1)n×rn

and

W0,j ,

[
V0,j

0n,rn

]
∈ R2dn×rn W1,j ,

[
0n,rn
V1,j

]
∈ R2dn×rn.

Now define the following matrices describing the successful and lost transmissions by

W ,
[
02dn×rn W0,r 02dn×rn W1,r

]
∈ R2dn×2d+1n

W̄ ,
[
W0,0 02dn×rn W1,0 02dn×rn

]
∈ R2dn×2d+1n,

respectively. Define Q̄ , diag {Q}, Ā , diag {A}, B̄ , diag {B}. Also let

R̄ , diag
{[
Rp1,φ(1), Rp2,φ(2), · · · , Rpd,φ(d)

]}

S̄k , diag
{[
Sk,1, Sk,2, · · · , Sk,2d

]}
,

and

Γk ,WŜkWT

Γ̄k , W̄ŜkW̄T ,

where

Ŝk , I2 ⊗ S̄k.

Then, (4.9) can be expressed as

S̄k = Q̄+ ĀT
(
Γk+1 + Γ̄k+1

)
Ā− ĀTΓk+1B̄

(
R̄+ B̄TΓk+1B̄

)−1
B̄TΓk+1Ā.

The augmented control gains (4.8) can then be computed by

L?k =
(
R̄+ B̄TΓk+1B̄

)−1
B̄TΓk+1Ā,

where L? is a block diagonal matrix with the control gains L?k,i, i ∈ Ξ on the diagonal. The control
gain L?k,i can be extracted as the i’th n×m diagonal block of L?k.

To implement the predictive controller design from Proposition 4.3.1, one would use a lookup
table that contains the control gains, and then at each time-step use the history that is contained
in Θk to select the corresponding control gain. This requires enough memory to store 2d−1 control
gains. Here, one question that arises is, whether it is necessary to take the full packet dropout
history into account in the controller design to guarantee a reasonable control performance. Omit-
ting part of the history will result in fewer control laws, and thereby a smaller lookup table. In the
next section, we present sub-optimal controller designs that reduce the amount of unique control
laws at the cost of performance.
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4. Control over networks with correlated packet losses

Grouping

e different
controllers

MA

CA
GA

Controller
design

Markov model
2d states

Figure 4.3: An illustration of where to do the grouping in the controller design. Here one can
reduce the number of Markov states prior to the controller design (MA), reduce the number of
control laws after the controller design (GA) or, reduce the number of control laws while doing the
controller design (CA).

4.4 Sub-optimal reduced complexity controllers

When designing the optimal control law for the system (4.1) affected by correlated packet losses
we, as described in Section 4.3, obtain a controller for every possible sequence of packet arrivals.
For a relevant history of length d, this results in 2d−1 unique controllers. Thus, the amount of
controllers will grow exponentially when a longer relevant history is considered. In the remainder of
this chapter, we study methods to reduce the number of controllers. This however, will inevitably
result in some degradation of the control performance. We therefore investigate different methods
that reduce the number of controllers while maintaining satisfactory control performance.

We propose to reduce the amount of controllers by designing a controller for a group of possible
packet arrival sequences. For example, consider a history length d = 3, such that Θ ∈ Ξ and the set
Ξ = {1, 2, · · · , 8}. Designing the control law using Proposition 4.3.1 would result in 4 controllers.
In this section we present methods that instead allows one to design only 2 or 1 controllers for
the set Ξ. This is done by grouping multiple states together and then design a controller for each
group. This however leads to two questions: 1. How to group the Markov states that govern the
different packet arrival sequences, and 2. what controller to use for each of these groups?

Thus, this problem breaks down to a grouping problem and a controller design problem. First,
we present a method on how to group the packet arrival sequences. Then, we present three
possible methods for the controller design. The three controller design methods differ in where in
the design process the grouping, and thereby reduction (or quantization) is done. This is illustrated
graphically in Figure 4.3. The three methods are:

• Markov averaged (MA) The grouping is done for the Markov chain. Here we reduce or
aggregate the Markov chain prior to the controller design. The controller design is thus done
for the reduced Markov chain, which therefore will lead to a reduced number of controllers.

• Group averaged (GA) The grouping is done after the controller design. The controller
design is thus done for the full Markov chain, and afterwards the number of controllers is
reduced.

• Cost averaged (CA) In this method the controller design is done for the full Markov chain
and the reduction of the number of controllers is enforced in the design.
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4.4. Sub-optimal reduced complexity controllers

In the MA design method, the grouping is done when reducing the Markov chain prior to the
controller design. This means that the optimal controller is designed for a less accurate network
model, which will result in performance loss. In the GA controller design, one first obtains the full
complexity optimal controllers for the full Markov chain. To reduce the amount of controllers, the
desired amount of controllers, are found by reducing the optimal controllers. It is worth noting that
in this case, the quantization (or reduction) is done at the end of the design process. This means
that the sub-optimality is first introduced at the end of the design process. Both of these methods
utilize the controller design that is presented in Proposition 4.3.1, and are relatively simple to
implement. Finally in the CA design method, the quantization is enforced when the controller
design is performed. Here the sub-optimality is taken into account in the cost function directly.
The control laws that are obtained here should therefore result in a lower cost, and therefore
also better performance, than the controllers that are obtained using the MA and GA methods.
However, the CA controller design is more complex.

Next in Section 4.4.1, we present a method on how to group the packet arrival sequences.
This grouping method is applied in all three reduced complexity controller designs. The difference
between the controller design methods is, as mentioned before, where in the design process the
grouping function is applied. After presenting the grouping method, we present the MA, GA and
CA designs in Sections 4.4.2 to 4.4.4.

4.4.1 Grouping the packet arrival sequences

In this section we discuss how to group the packet arrival sequences, such that we then can design
a controller for each of these groups. In Section 4.2 we assigned the packet arrival sequences to
values Θ ∈ Ξ using (4.2). We define a surjective function g : Ξ → Ξ̂ which maps the individual
packet arrival sequences to a group, for which we then design a controller for. Since we aim at
reducing the number of controllers, card

(
Ξ̂
)
≤ card (Ξ), with card () denoting the cardinality, or

number of elements in the set. Let Θ̂ ∈ Ξ̂ indicate the number of the group and associate with
Θ̂ = v the subset Ξ̂v, which is defined as

Ξ̂v , {i ∈ Ξ : g (i) = v} , (4.12)

to indicate which Θ get mapped to Θ̂ = v. Note that Ξ̂v are disjoint sets (Ξ̂v ∩ Ξ̂j = ∅ when
v 6= j).

The design of the grouping function is a well-known problem [26], [101]. The only method
on how to find the optimal grouping function is by performing a combinatorial search among all
possible grouping functions, which is a non-deterministic polynomial-time (NP)-hard problem. To
avoid this, we instead propose to design the grouping function g, such that the packet arrival
sequences are grouped by their most recent packet arrival history. The intuition behind this is,
that the most recent history has the largest impact on the outcomes of future packet dropouts.
Thus, we group the packet arrival sequences such that the most recent packet arrival history
(ρk−1, ρk−2, · · · , ρd−q), where 0 ≤ q ≤ d, is identical for all Θ ∈ Ξ̂v. This results in a total of 2d−q

groups. The grouping function g is in this case given by

g(Θ) =
⌈

Θ
2q

⌉
, (4.13)
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4. Control over networks with correlated packet losses

Θ̂ = 1

Θ̂ = 2

(0, 0) (0, 1)

(1, 0) (1, 1)

Figure 4.4: An example of the grouping of the packet arrival sequences. Here q = 1 and the
relevant history in each group (encircled by the dashed line) is marked in red.

and let Θ̂ = g(Θ). We then design control laws for each group, such that these become

ûk = f̂k

(
Θ̂k, xk

)
, (4.14)

where the variable Θ̂k ∈ Ξ̂ with Ξ̂ =
{

1, · · · , 2d−q
}

, and each Θ̂k = i is linked to a given packet
arrival sequence of the most recent d− q packet arrivals.

Example 4.4.1. Consider the case from Example 4.2.1. Then, with q = 1, we group the packet
arrival sequences by the most recent transmission outcome. Thus, Θ̂ takes values in Ξ̂ = {1, 2}.
This is illustrated in Figure 4.4. Using (4.12) and (4.13) we obtain that Ξ̂1 = (1, 2) and Ξ̂2 = (3, 4).
�

4.4.2 Optimal controller for reduced Markov chain (MA)

In the MA controller design, we first reduce the order of the Markov chain and then design an
optimal controller for this reduced Markov chain. We use the grouping function g from (4.13)
to obtain the groups of packet arrival sequences as explained in Section 4.4.1. We then compute
the transition probabilities between the groups Θ̂ ∈ Ξ̂ from the transition probabilities of the full
packet arrival sequences. This is called aggregation of the Markov chain, and is a well-studied topic
for efficient steady-state analysis of large Markov chains (see [101] and the references therein).
We hereby obtain a reduced order Markov chain with transition matrix P̂ ∈ R2d−q×2d−q . The
aggregation is done as follows: For a given state space and a choice of grouping of the reduced
state space, the aggregate steady-state probabilities are for each group computed by [101]

π̄v = Pr
{

Θ̂ = v
}

=
∑

j∈Ξ̂v

πj , ∀v ∈ Ξ̂,

and the aggregate transition probabilities are given by

p̂v,` = Pr
{

Θ̂k = `
∣∣∣Θ̂k−1 = v

}
=
∑
j∈Ξ̂v

∑
i∈Ξ̂`

πipi,j∑
j∈Ξ̂v

πj
.
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4.4. Sub-optimal reduced complexity controllers

This forms the aggregated (or reduced) transition matrix P̂ .
Afterwards, the optimal control law is designed using Proposition 4.3.1 for the reduced Markov

transition matrix. This results in a reduced number of controllers. Since we reduce, or quantize,
the Markov transition matrix prior to the controller design, we obtain an optimal control law for
a Markov model that is representative, but not completely describing the actual network model
that is affecting the system to be controlled.

4.4.3 Group averaged controller (GA)

The other simple approach that we present for the reduced complexity controller is the GA con-
troller. With this method, we first design the optimal controllers for the entire Markov chain in
the state-space Ξ using Proposition 4.3.1. Then, the controllers are grouped using the grouping
function g from (4.13) in Section 4.4.1, such that there is one controller for every group Θ̂ of packet
arrival sequences.

The reduced controllers will be of the form

ûk = L̂k,vxk g (Θk) = v,

where the control gains are given by

L̂k,v = E
{
Lk

∣∣∣Θ̂k = v
}
, ∀v ∈ Ξ̂.

=
∑

j∈Ξ̂i

Lk,j
πj
π̂v
,

with

π̂v , Pr
{

Θ̂k = v
}

=
∑

j∈Ξ̂v

πj .

4.4.4 Reducing the amount of controllers in the design (CA)

For the CA controller design, we force the control gain to be equal for all possible packet arrival
sequences that are contained in a group Θ̂. The grouping is done as described in Section 4.4.1. The
control law is thus designed by taking the expected value over the full history of (ρk−1, · · · , ρk−d)
in the cost function and then setting the controller for different outcomes of Θ to be identical. The
difference to the MA design is, that in the MA design, the Markov chain is reduced prior to the
controller design. The sub-optimality is therefore introduced into the design process before the
controllers design. On the contrary, the CA controller takes the full Markov chain into account
while minimizing the cost. The sub-optimality is then introduced directly when minimizing the
cost function by forcing some of the controllers to be equal.

More formally, we aim at forcing the grouping of the packet arrival sequences through in the
cost function that we utilize to design the controller. This is done by designing a control law of
the form

ûk,i = f̂k (g(i), xk) , ∀i ∈ Ξ̂ (4.15)
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4. Control over networks with correlated packet losses

to minimize the finite horizon cost function

J̄N (U0,N , x0) = E {JN (U0,N , x0,Θ0)|x0}

= E
{
N−1∑

k=0
‖xk‖2Q + ρk‖uk‖2R + ‖xN‖2SN,ΘN

∣∣∣∣∣x0

}
. (4.16)

Since g maps Ξ onto Ξ̂, the controller f̂k (g(i), xk) is identical for all i ∈ Ξ that g(i) maps to
the same Θ̂ ∈ Ξ̂. We therefore obtain the sequence of reduced controllers Ū0,N = (ū0, · · · , ūN−1)
with ūk =

(
ûk,1, · · · , ûk,2d−q

)
. The controller design is thus done by evaluating the optimization

problem
min
U0,N

J̄N (U0,N , x0)

subject to uk,i = f̂k (g(i), xk) i ∈ Ξ
k = 0, · · · , N − 1.

(4.17)

Also note that the control law (4.15) is only allowed to depend on xk and through g(Θk) on Θ̂k,
and thereby not on previously applied controls. This allows us to obtain closed form solutions to the
problem (4.17). Note however, that these control laws not necessarily are optimal, as described
in [116], [117], [123]. The control laws that are presented in [116], [117] can, however, not be
computed using closed form expressions, and an iterative algorithm is required. We therefore
instead focus on sub-optimal control laws that allow us to obtain closed form expressions. This
leads to the following result.

Theorem 4.4.1. The controls of the form (4.15) for (4.17) are given by

û?k = L̄?k,vxk, g(Θk) = v (4.18)

where the control gain for each v ∈ Ξ̂ is given by

L̄?k,v = −
(
R̄v +BT S̄k+1,vB

)−1
BT S̄k+1,vA. (4.19)

For all i ∈ Ξ

Sk,i = Q+ATSk+1,φ̄(i)Api,φ̄(i) +
(
L̄?k,g(i)

)T
RL̄?k,g(i)pi,φ(i)

+
(
A+BL̄?k,g(i)

)T
Sk+1,φ(i)

(
A+BL̄?k,g(i)

)
pi,φ(i), (4.20)

where SN,i = SN and

S̄k,v =
∑

i∈Ξ̂v

Sk,φ(i)pi,φ(i)πi (4.21)

R̄v = R
∑

i∈Ξ̂v

pi,φ(i)πi.

This results in the cost

J̄?N (x0) =
∑

i∈Ξ
xT0 S0,ix0πi + c0,iπi, (4.22)

where

ck,i = trace
(

Σω
(
Sk+1,φ(i)pi,φ(i) + Sk+1,φ̄(i)pi,φ̄(i)

))
+ ck+1,φ(i)pi,φ(i) + ck+1,φ̄(i)pi,φ̄(i), (4.23)

with cN,i = 0, i ∈ Ξ.
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4.5. Simulation studies

(ρk−1, · · · , ρk−4) Θ pi,φ̄(i) and Pr {ρk = 0} pi,φ(i) and Pr {ρk = 1}
0000 1 p1,1 = 0.2 p1,9 = 0.8
0001 2 p2,1 = 0.65 p2,9 = 0.35
0010 3 p3,2 = 0.78 p3,10 = 0.22
0011 4 p4,2 = 0.2 p4,10 = 0.8
0100 5 p5,3 = 0.85 p5,11 = 0.15
0101 6 p6,3 = 0.3 p6,11 = 0.7
0110 7 p7,4 = 0.75 p7,12 = 0.25
0111 8 p8,4 = 0.2 p8,12 = 0.8
1000 9 p9,5 = 0.6 p9,13 = 0.4
1001 10 p10,5 = 0.8 p10,13 = 0.2
1010 11 p11,6 = 0.5 p11,14 = 0.5
1011 12 p12,6 = 0.3 p12,14 = 0.7
1100 13 p13,7 = 0.5 p13,15 = 0.5
1101 14 p14,7 = 0.1 p14,15 = 0.9
1110 15 p15,8 = 0.4 p15,16 = 0.6
1111 16 p16,8 = 0.7 p16,16 = 0.3

Table 4.1: The non-zero Markov transition probabilities that are used for the simulations.

Proof. The proof of Theorem 4.4.1 is presented in Appendix 4.B.

4.5 Simulation studies

We compare the performance of the predictive controller designs proposed in Sections 4.3 and 4.4
using Monte Carlo simulation studies. The controllers are implemented as model predictive control
(MPC), that is, we set xk = L0,Θk

xk for all k. The performance of the proposed controller designs
is demonstrated for both a DC servo and a mass spring system with three masses. In both systems,
the network that connects the controller and the actuator is modelled by a d = 4’th-order Markov
chain. This results in 16 possible packet arrival sequences, and thereby 8 unique controllers. The
conditional packet arrival and loss probabilities for the network model are given in Table 4.1.
Both simulations consider a system of the form (4.1) with Σω = Im. The results are obtained by
averaging 500 simulations each of length 50 000. The costs (4.6) and (4.16) are computed with
horizon length N = 500 to obtain a steady-state solution. A standard LQR controller that does
not take the network conditions into account is used to benchmark. Simulations of the controller
design for i.i.d packet dropouts that we presented in Section 3.2.1 are also added for comparison.
Here the i.i.d probability for a transmission to be successful is computed out of the steady-state
probabilities of the Markov chain presented in Table 4.1. This results in a probability of λ = 0.5308
for successful transmission. The performance is measured using the empirical cost

cost = 1
50 000

50 000∑

k=1
xTkQxk + ρku

T
kRuk.
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Figure 4.5: Averaged results for simulations of a DC servo. The optimal control law is designed
using Proposition 4.3.1 and the MA, GA and CA control laws are designed as described in Sec-
tions 4.4.2 to 4.4.4. The reference i.i.d controller is from Section 3.2.1. The number trialing the
name indicates the amount of unique controllers.

4.5.1 DC servo

We consider a DC servo with states x =
[ .
θ θ
]T

with θ being the angular position and
.

θ the angular
velocity. The continuous time model is given by

A =
[

1
τ 0
1 0

]
B =

[
K
τ

0

]
.

We select the time constant τ = 5 and gain K = 50. The system has been discretized using c2d
in Matlab R2017a with sampling interval 1 s. This results in the discrete dynamics

A =
[

0.819 0
0.906 1

]
B =

[
9.063
4.683

]
,

with open loop eigenvalues located at 1 and 0.819.
The simulation results in Figure 4.5 show that the optimal stochastic controller design (Optimal

8) presented in Proposition 4.3.1 significantly outperforms LQR, which results in a cost of 23.4.
Compared to the i.i.d controller design from Section 3.2.1, the optimal controller results in a 2.6 %
performance increase.

When reducing the number of controllers to 4 controllers, the performance is only slightly
reduced compared to the optimal design. However, when only two controllers are desired, the CA
controller (from Theorem 4.4.1) results in the lowest performance reduction, followed by the MA
design (Section 4.4.2). Interestingly, the performance of the MA design is identical when one or
two controllers are used. This matches the performance of the CA design with one controller.
Both the CA and MA controllers outperform the i.i.d controller. The GA design, presented in
Section 4.4.3, does not lose much performance when four controllers are desired. Reducing the

58



4.5. Simulation studies

m1 m2 m3
k1 k2 k3 k4

F

Figure 4.6: An illustration of the model with three masses connected by springs that is considered
in the simulation in Section 4.5.2. The actuator exerts force F on the first mass.

number of controllers to one or two in the GA design, however results in lower performance than
the i.i.d design.

4.5.2 Mass spring system

In this simulation we consider a the system in Figure 4.6 with three masses on a surface connected
by springs to each other and side walls. There is an actuator exerting a force to the first mass.
The actuator is equipped with an integrator, such that the previous control input is held at the
actuator. The masses are denoted by m and are all equal (m = m1 = m2 = m3). The spring
coefficients are denoted by k and are also all equal (k = k1 = k2 = k3 = k4). The continuous time
dynamics of this system are given by

A =




0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

−2km km 0 0 0 0 1
km −2km km 0 0 0 0
0 km −2km 0 0 0 0
0 0 0 0 0 0 0




B =




0
0
0
1
m

0
0
1
m




,

where km , k
m . We set m = 1 and k = 0.323. This gives open loop eigenvalues at ±1.05j, ±0.804j,

±0.435j and one at 0 due to the integrator. Discretizing the system using c2d in Matlab R2017a
with sampling interval 1 s results in the discrete-time dynamics

A =




0.698 0.145 0.00407 0.897 0.0504 0.00083 0.474
0.145 0.702 0.145 0.0504 0.897 0.0504 0.0129

0.00407 0.145 0.698 0.00083 0.0504 0.897 0.00014
−0.563 0.257 0.0158 0.698 0.145 0.00407 0.897
0.257 −0.547 0.257 0.145 0.702 0.145 0.0504
0.0158 0.257 −0.563 0.00407 0.145 0.698 0.00083

0 0 0 0 0 0 1




B =




0.474
0.0129
0.00014
0.897
0.0504
0.00083

1




.

The discrete-time system has eigenvalues at 0.498± 0.867j, 0.694± 0.72j, 0.907± 0.421j and 1.
The simulation results are shown in Figure 4.7. The standard LQR did not manage to maintain

stability and is therefore omitted. The optimal controller that takes the full history into account
(Optimal 8) performs 18.2 % better than the i.i.d controller from Section 3.2.1. When the number
of controllers is decreased, the control performance is reduced. Similar to the simulations for the
DC servo, the CA controller outperformed the MA and GA controllers. When only one control law
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Figure 4.7: Averaged results for the simulations of a mass spring system with three masses. The
optimal control law designed using Proposition 4.3.1 and the MA, GA and CA control laws are
designed as described in Sections 4.4.2 to 4.4.4. The reference i.i.d controller is from Section 3.2.1.
The number trialing the name indicates the amount of unique controllers.

is desired, the MA and CA controllers outperform the i.i.d controller from Section 3.2.1 by a small
margin. It is however noteworthy that with MA with only one controller, the performance is better
than MA with two controllers. This is believed to be due to the combination of a sub-optimal
selection of the grouping function and a sub-optimality that is introduced when the Markov chain
is reduced. The CA method outperforms the other methods, however with only one controller, the
performance difference between the CA and MA is small.

4.6 Summary

In this chapter, we studied stochastic predictive control for systems that are affected by correlated
packet dropouts between the controller and actuators. The probability for a successful transmission
depends on a history of packet transmission outcomes. We obtained feedback policies that take into
account the packet arrival history by selecting representative gains from a lookup table. Further,
we presented a vectorized formulation of the problem, which makes the numerical solutions easier
to obtain. Simulation studies show that for the given network, the proposed optimal controller
outperforms standard linear quadratic regulator controller design by a large margin for stable
systems. As expected, the controller also offers an increased performance compared to the i.i.d
controller design from Section 3.2.1. When simulating the larger system with the given network,
the standard LQR controller is unable to maintain stability. On the other hand, the proposed
optimal controller that takes the full packet arrival history into account and the i.i.d controller
from Chapter 3 maintain stability. The proposed controller outperforms the i.i.d by a significant
margin in simulation studies. However, the disadvantage of the proposed controller compared to
the i.i.d controller is, that the implementation and design is significantly more complex. The design
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requires iterating a coupled Riccati equation (4.9) and (4.20), where the number of equations grows
exponentially when longer packet arrival histories are taken into account. These Riccati equations
can, however, be solved offline. This will result in a large lookup table that contains the controllers.
An implementation requires some multiplexing in the controller and enough memory to store the
lookup table.

In the second part of this chapter, we asked the question, whether it is necessary to have such
a large lookup table to achieve adequate control performance. To answer that, we proposed three
sub-optimal designs that trade-off the complexity and control performance. The difference between
these methods is where, during the design process, the reduction of the amount of controllers
is performed. For the given network model, all three of these methods show merely a minor
performance degradation when the number of controllers is reduced, which allows for a good
trade-off between performance and controller complexity. Of the three algorithms, the best control
performance for reduced complexity controller design were obtained using the cost averaged (CA)
controller, which enforces the reduction of the number of controllers through the cost. It is also
noteworthy that while the design procedure of the Markov averaged (MA) controller is simple, there
is only little performance loss compared to the CA controller. Another interesting observation is,
that when only one controller is desired, the MA and CA reduced controller designs outperform
the i.i.d by a small margin. The reason for this is, that the MA controller is designed using a
Markov chain with two states, which contains more information about the network than the i.i.d
model. For the CA controller the performance gain compared to the i.i.d, as well as the MA and
GA approach, is achieved since the entire Markov chain is directly taken into account within the
controller design. This results in a single controller that minimizes a cost function that takes the
entire Markov chain into account.

Appendix

4.A Proof of Proposition 4.3.1

The cost function (4.6) is minimized using dynamic programming [15]. Define the optimal cost

J?N (x0,Θ0) , min
U0,N−1

JN (U0,N−1, x0,Θ0) .

Note that the cost (4.6) at any stage n can be written as

J?N (x0,Θ0) = min
(u0,··· ,un)

E
{

n∑

k=0
‖xk‖2Q + ρk‖uk‖2R

+ J?N−(n+1) (Axn + ρnBun + ωn,Θn+1)
∣∣∣∣∣Θ0, x0

}
.

The argument proceeds by induction. At stage N we have the cost

J?0 (xN ,ΘN ) = E
{
xTNSNxN

∣∣ΘN , xN
}

= xTNSN,ixN .

Now at stage k + 1 we assume there for each Θk+1 ∈ Ξ exists an Sk+1,Θk+1 and ck+1,Θk+1 , such
that

J?N−(k+1) (xk+1,Θk+1) = xTk+1Sk+1,Θk+1xk+1 + ck+1,Θk+1 .
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Then at stage k we have

J?N−k (xk,Θk) = min
uk

E
{
‖xk‖2Q + ρk‖uk‖2R + J?N−(k+1) (Axk + ρkBuk + ωk,Θk+1)

∣∣∣∣∣Θk, xk

}
.

Using (4.1) and writing this out yields

J?N−k (xk,Θk) = min
uk

E
{
xTk
(
Q+ATSk+1,Θk+1A

)
xk + ρku

T
k

(
R+BTSk+1,Θk+1B

)
uk

+ 2ρkuTkBTSk+1,Θk+1Axk + ωTk Sk+1,Θk+1ωk + ck+1,Θk+1

∣∣∣∣∣Θk, xk

}

where we used the fact that ρ2
k = ρk and that ωk is white. Computing the expectation and recalling

that ρk is only non-zero when Θk+1 > r, as shown in (4.3), yields

J?N−k (xk,Θk) = min
uk

∑

j∈Ξ

(
xTk
(
Q+ATSk+1,jA

)
xk + 1{r+1,··· ,d} (j)uTk

(
R+BTSk+1,jB

)
uk

+ 21{r+1,··· ,d} (j)uTkBTSk+1,jAxk + trace (ΣωSk+1,j) + ck+1,j

)
Pr {Θk+1 = j|Θk} ,

where the indicator function 1S (i) = 1 if i ∈ S. By (4.4) and (4.5) we have that Pr {Θk+1 = j|Θk}
is only non-zero when j = φ (Θk) and j = φ̄ (Θk). Utilizing this results in

J?N−k (xk,Θk) = min
uk

∑

j∈{φ(Θk),φ̄(Θk)}

(
xTk
(
Q+ATSk+1,jA

)
xk + trace (ΣωSk+1,j) + ck+1,j

+ 1{r+1,··· ,d} (j)uTk
(
R+BTSk+1,jB

)
uk

+ 21{r+1,··· ,d} (j)uTkBTSk+1,jAxk

)
Pr {Θk+1 = j|Θk} .

By defining S̄k+1,i ,
∑
j={φ(i),φ̄(i)} Sk+1,jpi,j , the above can be written as

J?N−k (xk,Θk) = min
uk

xTk
(
Q+AT S̄k+1,Θk

A
)
xk

+ Pr {Θk+1 = φ (Θk)|Θk}
(
uTk
(
R+BTSk+1,φ(Θk)B

)
uk + 2uTkBTSk+1,φ(Θk)Axk

)

+ trace
(
ΣωS̄k+1,Θk

)
+

∑

j∈{φ(Θk),φ̄(Θk)}
ck+1,j Pr {Θk+1 = j|Θk} . (4.A.1)

The uk that minimizes (4.A.1) is found by taking the gradient of (4.A.1) with respect to uk and
setting it equal to 0. This yields

0 = 2 Pr {Θk+1 = φ (Θk)|Θk}
(
R+BTSk+1,φ(Θk)B

)
uk

+ 2 Pr {Θk+1 = φ (Θk)|Θk}BTSk+1,φ(Θk)Axk.

Here the terms Pr {Θk+1 = φ (Θk)|Θk} cancel out. Isolating uk results in (4.7) and (4.8).
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Substituting the optimal control (4.7) into (4.A.1) results in the optimal cost at stage k

J?N−k (xk,Θk) = xTk Sk,Θk
xk + ck,Θk

where Sk,Θk
is as in (4.9) and ck,Θk

is given in (4.11). Proceeding as in the above then leads to
(4.10).

4.B Proof of Theorem 4.4.1

This proof is organized as follows: We first show that the cost (4.16) can be expressed as a sum of
the costs given the history Θ̂k for all Θ̂k ∈ Ξ̂. We then show that each of these costs can be stated
as a function of the cost at the current stage plus the cost at the future stages. Finally, we show
by induction that the optimal control laws of the form (4.15) are given by (4.19).

To simplify the presentation of the proof, let

Vk , ‖xk‖2Q + ρk‖ûk,v‖2R.

Then, the cost (4.16) at stage N − k can be stated as

J̄N−k
(
xk, Ūk,N

)
= E

{
N−1∑

`=k
‖x`‖2Q + ρ`‖û`,v‖2R + ‖xN‖2S0

∣∣∣∣∣xk
}

= E
{
N−1∑

`=k
V` + ‖xN‖2S0

∣∣∣∣∣xk
}

=
∑

v∈Ξ̂

E
{
N−1∑

`=k
V` + ‖xN‖2S0

∣∣∣∣∣xk, Θ̂k = v

}
Pr
{

Θ̂k = v
}

=
∑

v∈Ξ̂

E
{
JN−k

(
xk, Ūk,N ,Θk

)∣∣∣xk, Θ̂k = v
}
π̂v, (4.B.1)

where π̂v , Pr
{

Θ̂k = v
}

=
∑
i∈Ξ̂v

πi. Define the cost (4.B.1) conditioned on Θ̂k = v by

FN−k
(
xk, Ūk,N , v

)
, E

{
JN−k

(
xk, Ūk,N ,Θk

)∣∣∣xk, Θ̂k = v
}
π̂v. (4.B.2)

This allows us to state (4.B.1) as

J̄N−k
(
xk, Ūk,N

)
=
∑

v∈Ξ̂

FN−k
(
xk,
(
ûk,v, Ūk+1,N

)
, v
)
. (4.B.3)

Next, we show that the partial cost (4.B.2) can be expressed as a function of the cost at stage
N − k plus the cost at stage N − (k + 1).

Lemma 4.B.1. With control law (4.15), the partial costs (4.B.2) can at each stage N − k be
expressed as

FN−k (xk, (ûk,v, ūk+1,N ) , v) = E
{
LN−k (xk, (ûk,v, ūk+1,N ) ,Θk)

∣∣∣xk, Θ̂k = v
}
π̂v,

where

LN−k
(
xk,
(
ûk,v, Ūk+1,N

)
,Θk

)
, xTkQxk + ρkû

T
k,vRûk,v

+ JN−k−1
(
Axk + ρkBûk + ωk, Ūk+1,N ,Θk+1

)

and JN−k−1 is given in (4.6).
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Proof. For each FN−k
(
xk,
(
ûk,v, Ūk+1,N

)
, v
)

we have

FN−k
(
xk,
(
ûk,v, Ūk+1,N

)
, v
)

= E
{
N−1∑

`=k
V` + ‖xN‖2S0

∣∣∣∣∣xk, Θ̂k = v

}
π̂v

= E
{
Vk

∣∣∣xk, Θ̂k = v
}
π̂v + E

{
N−1∑

`=k+1
V` + ‖xN‖2S0

∣∣∣∣∣xk, Θ̂k = v

}

︸ ︷︷ ︸
Ck

π̂v, (4.B.4)

where computing the second expectation on the right-hand-side yields

Ck = E
{

E
{

N−1∑

`=k+1
V` + ‖xN‖2S0

∣∣∣∣∣xk+1,Θk+1

}∣∣∣∣∣xk, Θ̂k = v

}

=
∫

E
{

N−1∑

`=k+1
V` + ‖xN‖2S0

∣∣∣∣∣xk+1,Θk+1

}
Pr
{
xk+1,Θk+1

∣∣∣xk, Θ̂k = v
}
dxk+1dΘk+1

=
∫
JN−k−1

(
xk+1, Ūk+1,N ,Θk+1

)
Pr
{
xk+1,Θk+1

∣∣∣xk, Θ̂k = v
}
dxk+1dΘk+1

= E
{
JN−k−1

(
xk+1, Ūk+1,N ,Θk+1

)∣∣∣xk, Θ̂k = v
}
. (4.B.5)

The result then follows by substituting (4.B.5) back into (4.B.4).

Now we can proof Theorem 4.4.1 using an induction argument. At stage 0, we have the cost

J̄?0 (xN ) = E
{
xTNSNxN

∣∣xN
}

=
∑

i∈Ξ
J̄0,i (xN )πi,

with J̄0,i (xN ) defined in (4.B.1). Then, at stage N − k− 1, consider the optimal cost with control
laws of the form (4.14) to be

J̄?N−k−1 (xk+1) =
∑

i∈Ξ
J̄?N−k−1,i (xk+1)πi,

where

J̄?N−k−1,i (xk+1) , J̄N−k−1,i
(
xk+1, Ū

?
k+1,N

)
i ∈ Ξ

= xTk+1Sk+1,ixk+1 + ck+1,i.

Then, at stage N − k, we have from (4.B.3) and Lemma 4.B.1 for Θ̂k = v

F ?N−k (xk, v) = min
ûk,v

E
{
LN−k,Θk

(xk, ûk,v)
∣∣∣xk, Θ̂k = v

}
π̂v

= min
ûk,v

∑

i∈Ξ
E {LN−k,Θk

(xk, ûk,v)|xk,Θk = i}Pr
{

Θk = i
∣∣∣Θ̂k = v

}
π̂v

(a)= min
ûk,v

∑

i∈Ξ̂v

E {LN−k,Θk
(xk, ûk,v)|xk,Θk = i}︸ ︷︷ ︸

Di

πi, (4.B.6)

where we in (a) used Bayes’ law. Now

Di = E {E {LN−k,Θk
(xk, ûk,v)|xk,Θk+1,Θk}|xk,Θk = i}

=
∑

j∈Ξ
E {LN−k,i (xk, ûk,v)|xk,Θk+1 = j} pi,j

(a)=
∑

j∈{φ̄(i),φ(i)}
MN−k,j (xk, ûk,v) pi,j , (4.B.7)
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where (a) follows by (4.4) and (4.5) and

MN−k,j (xk, ûk,v) , E {LN−k,i (xk, ûk,v)|xk,Θk+1 = j}
= xTk

(
Q+ATSk+1,jA

)
xk + trace (ΣωSk+1,j) + ck+1,j

+ 1(r+1,··· ,d) (j) ûTk,v
(
R+BTSk+1,jB

)
ûk,v + 21(r+1,··· ,d) (j) ûTk,vBTSk+1,jAxk.

Substituting (4.B.7) back into (4.B.6) yields

F ?N−k (xk, v) =
∑

i∈Ξ̂v

MN−k,φ̄(i) (xk, 0) pi,φ̄(i)πi + min
ûk,v

MN−k,φ(i) (xk, ûk,v) pi,φ(i)πi.

Writing out MN−k,φ̄(i) and MN−k,φ(i) yields

F ?N−k (xk, v) =
∑

i∈Ξ̂v

∑

j∈{φ̄(i),φ(i)}

[
xTN−1

(
Q+ATSk+1,jA

)
xN−1 + trace (ΣωSk,j) + ck+1,j

]
pi,jπi

+ min
ûk,v

[ ∑

i∈Ξ̂v

(
ûTk,v

(
R+BTSk+1,φ(i)B

)
ûk,v + 2ûTk,vBTSk,φ(i)Axk

)
pi,φ(i)πi

]
. (4.B.8)

Here the last part can, using (4.21), be rewritten to

min
ûk,v

[
ûTk,v

(
R̄v +BT S̄k+1,vB

)
ûk,v + 2ûTkBT S̄k+1,vAxk

]
.

Taking the gradient of (4.B.8) with respect to ûk,v and setting this equal to 0 then results in (4.18)
and (4.19). Inserting the result into Di in (4.B.7) and rewriting this yields

Di = xTk Sk,ixk +
∑

j∈{φ(i),φ̄(i)}
(trace (ΣωSk,j) + ck+1,j) pi,j

= xTk Sk,ixk + ck,i

= J̄?N−k,i (xk) , (4.B.9)

where Sk,i is given in (4.20) and ck,i in (4.23). Combining (4.B.3), (4.B.6) and (4.B.9) then results
in the cost (4.22).

65





Chapter 5

Scheduling for control over wireless networks

In this chapter, we consider a large discrete-time distributed linear time-invariant (LTI) system
where a central controller is connected to many actuators through a wireless network. This network
is affected by packet dropouts and bandwidth limitations. Due to these bandwidth limitations,
we can not address all actuators at every sampling interval. Hence, a scheduler is needed to select
at each time-step which actuator to address. In addition, the controller has to select the control
input that is transmitted to the addressed actuators. In this chapter, we present a co-design for
an optimal controller and scheduler, such that at every time-step an optimal schedule and optimal
control law are obtained. We present a method to co-design the controller/scheduler by minimizing
a finite horizon linear quadratic (LQ) cost function. This results in an algorithm which provides
online scheduling and control laws that can be implemented using model predictive control (MPC).
Simulation studies show that significant performance gains can be achieved over heuristic round
robin (RR) scheduling. The ideas that we present in this chapter are extended in Chapter 6.

This chapter is structured as follows: After the introduction and literature review, the net-
worked control system (NCS) problem formulation is presented in Section 5.2. The controller and
scheduler co-design is presented in Section 5.3. In Section 5.4, the performance of the co-design is
compared to simple RR heuristics by the use of Monte Carlo simulations. A summary concludes
this chapter in Section 5.5.

5.1 Introduction

The emerging development of wireless networks in industrial environments with possibilities for
real-time communications has significantly accelerated the research area of networked estimation
and control in recent years. Many applications already utilize NCSs, such as robotics, load control
on power grids and the smart home [73], [75], [76].

In this section, we consider the control of large scale NCSs that are connected through wireless
networks for which bandwidth limitations apply. If the NCS is sufficiently large, not all nodes of
the system can be addressed at any time and some form of scheduling has the be utilized. Works
such as [5], [7], [9], [38], [64]–[66], [71], [87], [103], [112], [118] utilize scheduling with the aim to
lower the sample rate of NCSs. This is done by utilizing open- or closed-loop scheduling policies
(self- or event-triggered control, respectively) for the controller and scheduler co-design. The main
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Figure 5.1: The IEEE 802.15.4 superframe structure.

motivation in these aforementioned studies is to reduce network utilization. While this can lead
to lower power consumption of the nodes on the network, the network will be under-utilized.
Instead, the NCS control and scheduling problem can be seen as a resource allocation problem;
how can a finite resource (the network) be utilized optimally to satisfy control goals, such as the
minimization of a cost-function? The works [42], [59], [60], [72], [92], [93], [111], [120], [131] address
this problem in a deterministic setting by proposing a co-design with a combined scheduler and
controller. This results in co-design laws on what actuators to address and what to send to the
addressed actuators. However, as discussed in Section 2.2, wireless networks are subject to random
effects such as disturbances, congestion and interference. This reduces the link quality and can
result in packet delays and/or losses. As shown in Chapters 3 and 4, it is important that these
effects are taken into account in the controller design [7], [9], [114].

In this chapter, we present a novel method that permits optimal utilization of the IEEE 802.15.4
superframe which is described in Section 2.2.1. Multiple widely implemented industry standards,
such as WirelessHART and ISA100 are based on the IEEE 802.15.4 MAC layer. The IEEE 802.15.4
superframe (see Figure 5.1) contains both a more reliable contention free period (CFP) and a less
reliable contention access period (CAP). For the control of a NCS, the CFP is preferred due
to its increased reliability. The CFP utilizes time division multiple access (TDMA) to schedule
transmissions, where a so-called network coordinator assigns slots in the CFP on a first-come-
first-served base. A limitation is however, that the IEEE 802.15.4 standard only allows 7 slots to
be assigned in the CFP of each superframe1. When this is not sufficient, the less reliable CAP
can be utilized. Transmissions in the CAP utilize a carrier sense multiple access with collision
avoidance (CSMA/CA) mechanism. This however leads to increased chances for collisions and
delays within the CAP. However, the CSMA/CA mechanism in the CAP allows for more flexibility,
since transmissions in the CAP are not assigned by the network coordinator.

We consider a large distributed NCS that generally has more actuators than the number of
available slots in the CFP in a superframe. The network is shared with other users that compete
for bandwidth, which further reduces the amount of slots in the CFP that are accessible. This
means, that one has to decide which actuators to address in the CFP, which ones in the CAP and,
in case not all actuators can be addressed during the CFP and CAP, which ones not to address.
Also, we need to select what input to send to the actuators that are addressed. The current chapter
investigates optimal scheduling and control co-design over IEEE 802.15.4 networks where we take
the advantage of both the CAP and CFP periods. We implement the algorithm using MPC ideas.

1It is worth noting that the IEEE 802.15.4e extension allows more than 7 in the CFP [44].
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ûn

x̂

ω

Controller
Shared IEEE

802.15.4
network

û1

û2

y1

y2

yp
State

estimator
ŷ
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Figure 5.2: The control system with many actuator and sensor nodes.

The performance of the proposed co-design algorithm is compared to RR heuristics by the use of
simulation studies.

Notation: In this chapter, the time indexing is done in brackets x (k) instead of subscripts
(xk), which was used in previous chapters. We reserve the subscripted notation xi to be the i’th
element in a vector x, or ai the i’th row in the matrix A.

5.2 Networked control setting

We consider a spatially distributed large control system with many sensors and actuators as il-
lustrated in Figure 5.2. The sensors and actuators are placed at different physical locations and
are not directly connected to each other. In Figure 5.2, ŷ and û are the measurement and control
signals, respectively, that are received after being transmitted over a shared wireless network. The
measurements are transmitted to a state estimator that is co-located at the controller. The esti-
mator produces the state estimate x̂, that is transmitted directly to the controller. The control
input u is transmitted to the actuators over a wireless network. The actuators are in general
not interconnected, so each actuator has to be addressed individually. In this work, we use the
optional acknowledgments from the IEEE 802.15.4 standard to confirm successful transmissions
to the actuators. Thus, the controller knows the transmission outcomes of u. Since the estimator
is co-located at the controller, the transmission outcomes of u are also available to the estimator.

The distributed systems all have their individual dynamics and share a synchronized sampling
interval. The dynamics of the individual system are combined in the augmented NCS plant model

x(k + 1) = Ax(k) +Bû(k) + Fω(k)

y(k) = Cx(k) + ν(k),
(5.1)

where x(k) ∈ Rm, û(k) ∈ Rn, y(k) ∈ Rp and A, B, F , C are matrices of appropriate dimensions.
The plant disturbance ω(k) ∼ N (0d,Σω) and measurement disturbance ν(k) ∼ N (0p,Σν) are
zero-mean Gaussian with covariances Σω and Σν , respectively. The control input that is received
by the actuators is given by

û (k) =
[
û1 (k) · · · ûn (k)

]T
,
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where the binary vector γ (k) ∈ Zn2 and each

ûj(k) =
{

uj(k) if γj(k) = 1
0 if γj(k) = 0

1 ≤ j ≤ n, (5.2)

with γj (k) = 1 indicating a successful transmission. The measurement vector that is received by
the estimator is given by

ŷ (k) =
[
ŷ1 · · · ŷp

]T
,

where each

ŷj (k) =
{

yj (k) if ψj (k) = 1
0 if ψj (k) = 0

1 ≤ j ≤ p.

Definition 5.2.1 (Pseudo inverse). In this section, we define the pseudo inverse for a symmetric
block-diagonal matrix P ∈ Rm×m with rank {P} ≤ m as

P † , T̄ (P + T )−1
T̄,

where T and T̄ are block diagonal and satisfy

T = TT (5.3)

TPT = 0 (5.4)

rank {P + T} = m (5.5)

T̄ = T̄T (5.6)

T̄ T̄ = T̄ (5.7)

T̄P = PT̄ = P (5.8)

T̄ T = T T̄ = 0. (5.9)

Lemma 5.2.1. The pseudo inverse in Definition 5.2.1 is unique and satisfies the following con-
ditions:

MM†M = M (5.10)

M†MM† = M (5.11)
(
MM†

)T = MM† (5.12)
(
M†M

)T = M†M. (5.13)

Proof. The proof is shown in Appendix 5.A.

5.2.1 Network considerations

The system (5.1) is connected through a wireless network that is shared with other users. The net-
work is based upon the IEEE 802.15.4 topology, which is explained in greater detail in Section 2.2.
In the current setting, we utilize two temporally separated superframes:

• one sensing superframe, in which sensor measurements are transmitted to the estimator, and
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Figure 5.3: Superframe structure for the networked control setup. Here the sensor measurements
at time-step k are transmitted in the sensing superframe, which finishes right before the actuation
superframe commences. The state estimator then predicts the state x̂(k+1|k) which the controller
uses to compute the control input u(k + 1) and schedule. The estimation superframe does not
feature a CFP

• one actuation superframe, in which control signals are transmitted to the actuators.

This superframe structure is illustrated in Figure 5.3. It is worth noting, that the sensing super-
frame for the ease of exposition does not feature a CFP.

In this chapter, we focus on the co-design of the controller. Therefore, the sensor measurements
are for simplicity all transmitted during the CAP of the sensing superframe in Figure 5.2. In the
current setting, the sensor measurements are still affected by packet loss. Scheduling of the sensor
measurements for the estimation can be considered a dual problem to the scheduling and co-design
of the actuators.

Since we aim at maximizing the control performance for the system (5.1) over a finite resource
(the number of transmissions that can fit in a superframe), the ideal strategy would be to utilize the
entire superframe for the controller design. That is, 7 slots in the CFP and as many transmissions
in the CAP as can fit in the duration of the CAP. This would give the optimal control performance
provided that no other users utilize the network. However, since the network is shared with other
users that also utilize bandwidth, the aforementioned strategy would result in network overload.
We therefore, for fairness on the network, restrict the controller to only utilize a maximum number
of NCFP and NCAP slots in the CFP and CAP, respectively, in each superframe. This is illustrated
in Figure 5.1.

We synchronize the sampling interval of the augmented system (5.1) to the beacon interval
of the sensing superframe. This is illustrated in Figure 5.3. This means, that at the beacon
interval of the sensing superframe, all controls in the vector û (k) are applied to the actuators, and
the measurement y (k) is taken and transmitted. Between two sensing superframe beacons, the
following actions are performed:

1. At time k, controls û (k) are applied at the actuators and measurement y (k) is sampled and
transmitted in the sensing superframe.
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2. The estimator receives ŷ (k) and computes state prediction x̂ (k + 1).

3. The controller computes the optimal schedule and control inputs u (k + 1)

4. The schedule is applied and the controls are transmitted during the actuation superframe

It is worth noting that in the above, the controller uses the prediction of the state x (k + 1),
x̂ (k + 1) to compute the optimal schedule and controls. The reason for this is, that the control
inputs will first be applied at the actuators at time k + 1. We describe in more detail how this is
implemented in Section 5.2.2. By synchronizing the sampling interval to the beacon frame of the
superframe, we can ignore inter-transmission times and delays within the superframe.

Remark 5.2.1. It is also possible to transmit both the sensor measurements and control inputs
in the same superframe. In this case, the control inputs are not applied at the actuators before the
sensors are sampled. This means, that the controller at time k needs to transmit control inputs
that are applied when sample k + 1 is taken. However, the controller is only receiving sample k
while it is transmitting the controls that are applied at sample k + 1. Thus, the controller has to
compute the control inputs that are applied at sample k+ 1 using the state prediction that is based
on the measurement that is taken at time k − 1.

In the current setting, we utilize the following assumption for delayed transmissions.

Assumption 5.2.1. We consider transmissions in a CAP or CFP that are delayed until the next
superframe as being lost. These occur with fixed packet dropout probabilities 1−pCAP and 1−pCFP,
respectively, where pCFP > pCAP. For simplicity we consider the packet loss rates to be constants
and known.

While Assumption 5.2.1 might seem restrictive, it is worth noting, that the controller at the
next superframe has new data available. This data is used to compute an updated schedule and
control laws. It is therefore preferable to transmit these new control inputs instead of attempting
to retransmit the old control inputs.

Remark 5.2.2. The beginning of the superframe is indicated by a beacon frame, that the network
coordinator transmits. If a user does not receive this beacon frame it shall, according to the IEEE
802.15.4 standard [43], not attempt to transmit data in that superframe. The probability that a
user does not receive a beacon frame can be incorporated in the packet loss probabilities 1− pCAP

and 1− pCFP.

5.2.2 System setting

With the network described, we now present a more detailed description of the system (5.1) and
actuator strategies (5.2). First recall, that the sensor measurements are transmitted over the
network in the CAP. We need a state estimator to obtain an estimate of the state that then is
used in the controller and scheduler co-design. We utilize an estimator that takes packet dropouts
into account to perform the state estimation. This estimator is based on the Kalman filter that is
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described in Section 2.3.2, and is presented in [100], [105]. This leads to the optimal estimator

x̂ (k + 1) = Ax̂ (k) +Bû (k) +K (k) (ŷ (k)− C (ψ (k)) x̂ (k)) (5.14)

P (k + 1) = AP (k)AT + Σω −K (k)C (ψ (k))P (k)AT ,

where the matrix

C (ψ (k)) ,




ψ1 (k)C1
...

ψp (k)Cp


 ,

with Pr {ψi = 1} = pest. The Kalman gain is given by

K(k) = P (k)CT (ψ(k))
(
R+ C (ψ(k))Pk+1C (ψ(k))T

)†
,

where † denotes the matrix pseudo inverse defined in Definition 5.2.1.
Since successful packet transmissions are acknowledged (the transmission control protocol

(TCP) case), the estimation error becomes

x(k + 1)− x̂(k + 1) = Ax(k) +Bû(k) + Fω(k)− (Ax̂(k) +Bû (k) +K (k) (ŷ (k)− C (ψ (k)) x̂ (k)))

= A (x(k)− x̂(k))−K (k)C(ψ(k)) (x(k)− x̂ (k))−K (k) ν̂(k) + Fω(k),
(5.15)

where

ν̂i(k) =
{

νi(k) if ψi(k) = 1
0 if ψi(k) = 0

1 ≤ i ≤ p.

It is worth noting that (5.15) does not depend on the control input û (k). This means that the
optimal estimator can be designed separately from the controller.

In the following, we consider the controller and scheduler co-design for the state feedback case.
That is, the controller/scheduler has full access to the state x(k). In Section 5.3.2 we briefly discuss
controller and scheduler co-design for the case where the controller does not have access to the
state x(k) and instead receives intermittent observations y(k).

As already mentioned in Section 5.2.1, the actuators are to be controlled over an IEEE 802.15.4
compatible network, which can only support a limited amount of data during the CAP and CFP.
We are interested in a situation where the combined amount of available slots in the CAP and
CFP in each superframe is less than the amount of actuator nodes in the system. This means, that
we have to schedule which actuators to address in every actuation superframe. Recall further from
Assumption 5.2.1, that a packet which at time k is delayed until a future superframe, is considered
as being lost. The probabilities for these delays to occur are independent and identically distributed
(i.i.d) and are included in the packet dropout probabilities pCAP or pCFP.

We let the length n vector S(k) be the schedule at time k, given by

S(k) ,
[
s1(k) s2(k) . . . sn(k)

]T
∈ S, (5.16)

where each entry, sj(k), indicates whether actuator j is addressed during the CAP, CFP or is not
addressed. To indicate in which period actuator j is addressed, we set the entry sj(k) equal to
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the probability of a successful transmission during the period in the superframe. Thus, the set S
is defined as

S ,




S =




s1
...
sn




∣∣∣∣∣∣∣∣
si ∈ {0, pCAP, pCFP}




, (5.17)

where pCAP and pCFP are the (known or estimated) probabilities for a successful transmission in
the CAP and CFP, respectively. Denote the set of admissible schedules by Sa ⊂ S. An admissible
schedule satisfies that, NCAP elements are pCAP and NCFP elements are pCFP, while the remaining
elements are zero. The set Sa is formally stated as

Sa ,



S ∈ S

∣∣∣∣∣∣

n∑

i=1
1pCAP (si) = NCAP ∧

n∑

j=1
1pCFP (sj) = NCFP



 , (5.18)

where the indicator function 1a (b) = 1 if a = b and zero otherwise.
A length N scheduling sequence is then defined by

Sk,N , (S (`) ∈ S : ` = k, · · · , N − 1) ,

while a length N admissible scheduling sequence is defined by

Sk,N , (S (`) ∈ Sa : ` = k, · · · , N − 1) ∈ ΞN ,

where ΞN is the set of all admissible scheduling sequences. Further, let SN , S0,N .
The vector γ(k) ∈ Zn2 contains all transmission outcomes for the control inputs that are trans-

mitted in superframe k. Recall from (5.2) that γj(k) = 1 if the transmission to actuator j was
successful and γj(k) = 0 otherwise. Thus the distribution of γj(k) is given by

Pr {γj(k) = 1 ; S (k)} = sj(k), j ∈ {1, 2, . . . , n} ,

where Pr {A ; B} means that the distribution of the random variable A is parameterized by B.
As described in Section 2.3, there are various possibilities of what the actuator should do in

case it either is not addressed at time k, or the transmission of the packet containing the control
signal failed. However, for the ease of exposition, in what follows we adopt the set-to-zero strategy
from (5.2).

Define

B(γ(k)) , B diag {γ(k)} , (5.19)

where diag {γ(k)} creates a n × n matrix with the entries of γ(k) on its diagonal. Using this, we
combine (5.1) and (5.2) to obtain the NCS model

x(k + 1) = Ax(k) +B (γ(k))u(k) + Fω(k). (5.20)

Example 5.2.1. In (5.1), consider the input matrix

B =
[
b1 b2 b3 b4

]
∈ Rm×4,
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and the schedule at time k given by

S(k) =
[
pCFP pCAP pCAP 0

]T
.

If the transmission outcomes at time k are

γ (k) =
[
1 1 0 0

]T
,

then,

B(γ(k)) = B diag
{[

1 1 0 0
]}

=
[
b1 b2 0 0

]
.

This means that the first and second actuators will receive their control input. �

Within the current setup, scheduling amounts to designing the schedule S(k) in (5.16). Since
pCFP > pCAP one would ideally like to assign every actuator in the CFP in each superframe.
However, this can only be done if the number of actuators does not exceed the number of available
slots in the CFP (NCFP). Otherwise, the CAP needs to be used as well. Further, if the number
of actuators exceeds the total amount of available slots in the CFP and CAP (NCFP + NCAP),
some actuators will not be addressed at all in that superframe. This raises the question: Which
actuators to address in which slot in a superframe, which ones to omit and what data should be
sent?

To solve this scheduling and controller co-design problem, ideally one would like to utilize
the scheduling sequence and control policies that minimize an infinite horizon LQ cost function.
However, it is in this case not feasible to evaluate an infinite horizon cost function since this
results in an infinitely long scheduling sequence and associated control policy. The matrix B(γ(k))
is further stochastic and depends on S(k) for each k. Due to these uncertainties in the system, there
might not exist a solution to the infinite horizon cost function, see e.g. [10], [15] and references
therein. We will therefore use the ideas of MPC with a finite horizon cost function to address the
scheduling and controller co-design problem.

5.3 Stochastic control formulation

In this section we want to design a sequence of control laws

U?N , (u? (`) : ` = 0, · · · , N − 1) (5.21)

and schedules

S?N , (S? (`) ∈ Sa : ` = 0, · · · , N − 1) , (5.22)

such that the LQ cost

JW (x(0),SN , UN ) , E
{
‖x(N)‖2W +

N−1∑

`=0
‖x(`)‖2Q + ‖u(`)‖2R(γ(`))

∣∣∣∣x(0) ; SN
}

(5.23)

is minimized, where

E {A ; B} ,
∫
APr {A ; B} dA.
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In (5.23), the positive semi-definite tuning parameters Q ≥ 0 and W ≥ 0 penalize the state.
The random matrix R (γ (k)) ≥ 0 penalizes the control input for successful transmissions. Each
rij (γ (k)) of R (γ (k)) is given by

rij (γ) ,
{

rij if γi = 1 and γj = 1
0 otherwise

0 < i, j ≤ n,

where rij is the i, j’th element of the tuning parameter R ≥ 0. The parameters Q, W and R can be
tuned to trade-off control performance against control effort. The optimal control and scheduling
laws (5.21) and (5.22) are then found by

(U?N ,S?N ) , arg min
UN ,SN∈ΞN

J (x (0) ,SN , UN ) , (5.24)

where SN is minimized over all admissible scheduling sequences. This results in the optimal cost

J?W (x (0)) , JW (x (0) ,S?N , U?N ) .

5.3.1 Solution to the minimization problem

The joint optimization problem (5.24) is a mixed integer problem, where the scheduling sequence
SN is a discrete variable. Here recall that each element sj of each schedule S (k) in the sequence
SN takes values in the set {0, pCAP, pCFP}. This is therefore a difficult problem to solve. However,
we can rewrite problem (5.24) to separate the integer and the continuous part of the optimization
problem. This yields

J?W (x (0)) = min
SN∈ΞN

[
min
UN

[JW (x (0) ,SN , UN )]
]
. (5.25)

This means, that we first can solve the inner problem for each possible scheduling sequence SN .
This problem is convex for each SN and has an analytical solution. The optimal control laws for
a known scheduling sequence SN are presented next.

Theorem 5.3.1. For a known scheduling sequence SN ∈ S, the optimal controls are given by the
policy

u (k) = −L?kx (k) k = (0, · · · , N − 1) , (5.26)

where the control gain is given by the n×m matrix

L?k = [R (S (k)) +M (Pk+1, S (k))]†BT (S (k))Pk+1A, (5.27)

with

M (X,S (k)) ,
∑

s∈Zn
2

B (s)T XB (s) Pr {γ = s ; S (k)} , (5.28)

and † denoting the pseudo matrix inverse defined in Definition 5.2.12. In (5.27), the matrix Pk is
given by the recursion

Pk = Q+ATPk+1A−ATPk+1B (S(k)) [R (S(k)) +M (Pk+1, S (k))]†BT (S(k))Pk+1A (5.29)

2Since S (k) is zero for actuators that are not addressed, the block diagonal matrices R (S(k)) and
M (Pk+1, S (k)) are in general singular.
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with PN = W . This results in the optimal cost for the known scheduling sequence SN

JW (x (0) ,SN , U?N ) = x (0)T P0x (0) +
N∑

`=1
trace

(
ΣωFTP`F

)
. (5.30)

Proof. The proof is presented in Appendix 5.B.

Theorem 5.3.1 presents the closed form solution for a known scheduling sequence SN ∈ S. Note
however, that (5.26), (5.27) and (5.29) all depend on the particular scheduling sequence SN . We
therefore define (5.27) and (5.29) as functions of the scheduling sequence. Thus

Pk (Xk,N ) , Q+ATPk (Xk+1,N )A−ATPk+1 (Xk+1,N )B (X (k))
[
R (X (k)) +M

(
Pk+1 (Xk+1,N )k , Xk,N

)]†
BT (X (k))Pk+1 (Xk+1,N )A (5.31)

L?k (Xk,N ) , [R (X (k)) +M (Pk+1 (Xk+1,N ) , Xk,N )]†BT (X (k))Pk+1 (Xk+1,N )A,

such that for a given scheduling sequence SN the control input is given by

u (k) = −L?k (Sk,N )x (k) .

Also, denote the sequence of optimal control laws

U?N (Sk,N ) = (−L?` (S`,N )x (`) : ` = 0, · · · , N − 1) .

Now the optimal scheduling sequence S?N can be found by

S?N = arg min
SN∈ΞN

[JW (x (0) ,SN , U?N (SN ))]

= arg min
SN∈ΞN

[
x (0)T P0 (SN )x (0) +

N∑

`=1
trace

(
ΣωFTP` (S`,N )F

)
]
, (5.32)

where SN is minimized over all admissible scheduling sequences. This results in the length N

sequence of optimal control laws

U?N (S?N ) = (u? (`) : ` = 0, · · · , N − 1)

where each control law is given by

u? (k) = −L?k
(
S?k,N

)
x (k) . (5.33)

5.3.2 Separation

When output feedback is used instead of state feedback, the controller has at each time-step k

access to the following information

I (k) , (yk, γk, υk, S (k) , I(k − 1))

I (0) , (E {x (0)}) .

The cost (5.23) then becomes

JW (I(0),SN , UN ) , E
{
‖x(N)‖2W +

N−1∑

`=0
‖x(`)‖2Q + ‖u(`)‖2R(γ(`))

∣∣∣∣I (0) ; SN
}
.
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Figure 5.4: Illustration of MPC where N = 3.

It still holds true, that the joint minimization of this cost with respect to the scheduling sequence
and controls can be separated into two problems

J?W (I (0)) = min
SN∈ΞN

[
min
UN

[JW (I (0) ,SN , UN )]
]
. (5.34)

The solution to the inner minimization problem is presented for the state feedback case in Theo-
rem 5.3.1. It is straightforward to find the optimal controls for a known scheduling sequence for
the inner cost in (5.34) by following the arguments from the work [100] and the steps in the proof
of Theorem 5.3.1, which is found in Appendix 5.B. It then shows that when output feedback is
used, the optimal control is given by

u (k) = −L?k (Sk,N ) x̂(k|k).

The optimal scheduling sequence at each time step is then given by

S?N = arg min
SN∈ΞN

[JW (I (k) ,SN , U?N (SN ))]

= arg min
SN∈ΞN

[
x̂ (k|k)T P0 (SN ) x̂ (k|k) +

N∑

`=1
trace

(
ΣωFTP` (S`,N )F

)
]
.

Thus, as shown in Section 5.2.2, the optimal estimator can be designed independently from the
controller. Also, the optimal controller and scheduler can be designed using state feedback, and the
same control and scheduling laws apply when the state is replaced by the optimal state estimate.
Therefore, the separation principle holds for the controller and scheduler co-design.

5.3.3 Implementation

The finite horizon controller-scheduler (5.32) and (5.33) can be implemented as MPC. In the
MPC algorithm, one computes (5.32) at every time-step. Here, only the first schedule S? (0) in
the sequence S?N and the first control gain L?0 (S?N ) are used. The rest is discarded. The MPC
algorithm is stated in Algorithm 5.1 and illustrated in Figure 5.4.

Algorithm 5.1 MPC algorithm.
Input: state x (k)
Compute: S?0,N using (5.32)
Compute: u? (k) = −L?0

(
S?0,N

)
x (k) as in (5.33)

Output: schedule S? (0) and control u? (k)
Discard: schedules S?1,N and controls U?1,N

Studies show, that a longer prediction horizon N results in better control performance [62].
This however, results in an exponentially increasing complexity to find the optimal scheduling
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sequence and control laws. It is therefore desirable to maintain the horizon length N relatively
short. Another parameter that has an impact on the control performance is the weighting of the
terminal cost W in (5.23). By choosing W with care, one can obtain significant improvements
in the control performance of the NCS, and in some cases, guarantee closed-loop stability [55,
Theorem 1], [63], [124]. An examples for a choice of W is be discussed in Section 6.3.2.2. This
motivates the use of an infinite horizon approximation of the cost (5.23), which is presented in
Chapter 6. Next, we will discuss computational considerations of Algorithm 5.1.

5.3.4 Numerical considerations

It is worth to note that the minimization problem (5.32) is a combinatorial problem. Also, while
the control laws L?k (Sk,N ) for each scheduling sequence can be computed offline, the optimal
scheduling sequence S?N depends directly on the system state x (k). This means that (5.32) can
not be computed offline. An exhaustive search has to be performed to evaluate (5.32) where (5.30)
has to be evaluated for every scheduling sequence SN ∈ ΞN . Recall, that ΞN is the set that
contains all admissible scheduling sequences for a horizon of length N . For NCFP slots in the CFP
and NCAP slots in the CAP, the cardinality of ΞN , which is equal to the number of admissible
scheduling sequences, is given by

card (ΞN ) =
[(

n

NCFP

)(
n−NCFP

NCAP

)]N
, (5.35)

where (
n

r

)
= n!
r! (n− r)!

is the binomial coefficient and n is the number of actuators to address. It is worth noting that in
(5.35), the cardinality increases exponentially as the horizon length N increases. This results in
an exponentially increasing computational complexity and is known as the curse of dimensionality
[15, Chapter 6].

However, the computational requirements can be reduced by some extent, since the Riccati
recursion (5.31) does not depend on the state x. This allows for the offline computation of (5.31).
Also, the optimal cost (5.30) for a scheduling sequence SN can be stated as

JW (x (0) ,SN , U?N ) = x (0)T P0x (0) + noise (SN ) ,

where

noise (SN ) ,
N∑

`=1
trace

(
ΣωFTP` (Sk,N )F

)
(5.36)

can be computed offline. This reduces the online computations of (5.32) significantly. Algorithm 5.2
shows the online part of (5.32) with the required floating point operations (flops) indicated for each
step.

The number of flops that is required in total at each time-step to find the optimal scheduling
sequence and control laws is then

3
2 card (ΞN )

(
m2 +m

)
+ card (ΞN )− 1 flops, (5.37)

where card (ΞN ) is given by (5.35).
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Algorithm 5.2 Computing (5.32) at each time-step
Computed offline:

noise(s) s ∈ ΞN
P0(s) s ∈ Ξ

Input: x (k)
for s ∈ ΞN do . card (ΞN ) times

cost(s) = x (k)T P0 (s)x (k) . 3
2
(
m2 +m

)
− 1 flops

cost(s) = cost(s) + noise (s) . 1 flop
end for
S?N = arg mins∈Ξ cost(s) . card (ΞN )− 1 flops

Remark 5.3.1. Many works that considered actuator selection and scheduling over networks came
to the conclusion that an exhaustive search has to be performed to find the optimal scheduling
sequence, see for example [42], [92], [93]. These works propose to use simulated annealing [48] as
well as branch and bound algorithms to obtain solutions to the combinatorial problem (5.32). A
heuristic, that not necessarily results in the optimal schedule is presented in [93].

The controller and scheduler co-design is done using state augmentation. However, when the
system (5.1) consists of multiple distinct sub-systems, the matrix A is sparse since the sub-systems
are contained on the block diagonal. In this case, the control gain L?k (5.27) and Riccati equation
Pk (5.29) are also sparse. The computational complexity for computing (5.32) can be reduced
significantly by utilising this sparsity in implementations. Another option is to split the system
(5.1) into distinct equations for each subsystem. For example, for d decoupled sub-systems, the
minimization problem (5.32) can be rewritten as

S?N = arg min
S?

N
∈ΞN

[
d∑

i

xi (0)Pi,0 (Si,N )xi (0) + ci (Si,N )
]
. (5.38)

This reduces the number of multiplications significantly. In (5.38) the Riccati recursion Pi,0 can be
found as the i’th block-diagonal of P in (5.31). If one aims at reducing the offline computational
complexity, one can instead compute each block diagonal Pi,k of Pk individually.

To use Algorithm 5.2, (5.31) and (5.36) have to be computed offline. While it involves no
difficulties to compute (5.31) for every possible scheduling sequence SN ∈ Ξ, it is possible to
reduce the amount of offline computations significantly by using a periodic assumption on the
scheduling sequence SN . Another method to reduce the length of the scheduling sequence SN is
to carefully design the final state weighting W in the cost (5.23). These approaches are considered
in more detail in Chapter 6.

5.4 Simulations

In this section, we study the performance of the scheduling and controller co-design algorithm that
is presented in Algorithm 5.1 through simulation studies. We first shortly present a branch and
bound approach that can reduce the amount of computations needed in the exhaustive search in
(5.32). This is presented in Algorithm 5.2. This is followed by a simulation where three actuators
compete for one slot in the CFP and one slot in the CAP, after which we simulate a scenario where
four actuators compete for one slot in the CFP and one slot in the CAP.
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5.4.1 Branch and bound algorithm

Although the presented algorithm requires an exhaustive search to be performed, where the amount
of flops required is given by (5.37), the amount of searches required can be reduced using a simple
branch and bound algorithm. When the system is in steady-state and x(k) is zero, the only part
contributing to the cost (5.30) is the constant part (5.36), that depends on the variance of the
disturbance and the selected schedule. These parts can be calculated offline. When the cost (5.30)
is computed for every possible scheduling sequence, we sort the costs JW (0,SN , UN (SN )) in a list
in ascending order. That is, the first cost in the list,

JW
(
0,S1

N , UN
(
S1
N

))
= min
SN∈ΞN

JW (0,SN , UN (SN )) ,

where Ξ is the set of all possible scheduling sequences. Cost d in the list is then given by

JW
(
0,SdN , UN

(
SdN
))

= min
SN∈{ΞN\S1:d−1

N }
JW (0,SN , UN (SN ))

= min
SN∈{ΞN\S1:d−1

N }
noise (SN ) ,

where by a slight abuse of notation, the set S1:d
N =

{
SiN : i = 1, · · · , d

}
. By sorting the scheduling

sequences, such that the constant part (5.36) is sorted from low to high values, (5.32) can be
terminated when for some index d

min
SN∈S1:d−1

N

JW (x(k),SN , U?N (SN )) ≤ JW
(
0,SdN , UN

(
SdN
))
.

The algorithm is illustrated in Algorithm 5.3.

Algorithm 5.3 Branch and bound approach used for simulations
Input: state x (k)
Variable: i? = 1
Compute: J i?W , JW

(
x(k),S1

N , U
?
N

(
S1
N

))
. . Initial optimal state

for j = 2, card (ΞN ) do
if J i?N ≤ JW

(
0,SjN , U?N

(
SjN
))

then . Optimal scheduling sequence found
Optimal scheduling sequence S?N = Si?N .
Optimal control laws U?N (S?N )
Break . Exit the loop

end if
J i

?

W = arg min{i?,j}
{
J i

?

W , JW

(
x(k),SjN , U?N

(
SjN
))}

. Test next scheduling sequence
end for

5.4.2 Numerical example

In this section, we illustrate the idea of the online scheduling and controller co-design, as well
as the advantage of online scheduling over offline scheduling heuristics. We consider a NCS with
three actuators that compete for one slot in the CFP one slot in the CAP. The parameters of the
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Figure 5.5: The evolution of the state Figure 5.5a and control Figure 5.5b for a simulation of (5.39)
using the co-design presented in Algorithm 5.1. In Figure 5.5b, the circles indicate a packet loss
on a scheduled transmission. The allocation of slots at each time-step is shown in Figure 5.5c,
where a red cross indicates a packet loss. Each actuator’s share of the CAP and CFP is shown
in Figure 5.5d, where also the average sampled probability for successful transmission when the
actuator is addressed (Pr {γi = 1 ; si 6= 0}) and the overall sampled probability for a successful
transmission on each actuator (Pr {γi = 1}).

system model (5.1) are given by

A =




1.5 0 0 0 0
0 1.1 0 0 0
0 1 1.1 0 0
0 0 0 0.819 0
0 0 0 0.906 1



, B =




1 0 0
0 1 0
0 0.5 0
0 0 9.063
0 0 4.683



. (5.39)

The plant disturbance ω(k) ∼ N (05, 0.01I5) and F = I5. We can observe all states such that
C = I5 and the measurement noise ν(k) ∼ N (05, I5). In this setting, we select the weighting
matrices as Q = I5, R = 2I3 and W = I5. This system has open loop eigenvalues at 1.5, 1, 0.82
and two eigenvalues located at 1.1. The probabilities for successful transmissions are pCFP = 0.95,
pCAP = 0.75. We select the horizon length to N = 3.

We consider the superframe structure that is presented in Section 5.2.1. This means, that we
use the state estimator (5.14) to compute the prediction E {x (k + 1)|ŷ (k)}. This prediction is
then used in Algorithm 5.1 to find the optimal scheduling sequence and control law. We assume
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Figure 5.6: The evolution of the state Figure 5.6a and control Figure 5.6b for a simulation of (5.39)
using RR schedule. In Figure 5.6b, the circles indicate that a transmission was scheduled, but a
packet dropout occurred.

for ease of exposure that all measurements are transmitted in one packet during the CAP in the
estimation superframe. The probability for successful transmission pest = pCAP = 0.75.

Figures 5.5a and 5.5b shows the evolution of the state and control inputs for system (5.39)
using the co-design in Algorithm 5.1. This MPC algorithm computes at each time-step k both an
optimal scheduling sequence and optimal control laws. We compare the developed MPC algorithm
to a simple RR heuristic, where the access to the CFP and CAP is shared equally among the actu-
ators. This means that we offline select a scheduling sequence, which then is repeated periodically.
The control laws are then for each cyclic perturbation of the periodic schedule obtained using
Theorem 5.3.1. Thus, the RR control laws are also implemented using MPC, but the scheduling
is fixed. Figure 5.6 depicts the evolution of the state and control inputs for such a RR algorithm
that features the predetermined scheduling sequence

S3 =






pCFP

pCAP

0







0
pCFP

pCAP






pCAP

0
pCFP





 . (5.40)

The control laws are obtained by Theorem 5.3.1 for a horizon length N = 3. Comparing the
results from Algorithm 5.1 in Figure 5.5 to the RR in Figure 5.6, the co-design algorithm is able
to achieve steady-state significantly faster than the RR algorithm.

Figure 5.5c shows the transmission slot allocation for the co-design algorithm. An interesting
observation is, that following a packet drop event, the same schedule is not necessarily repeated, and
often a new schedule is utilized. The reason for this is, that the controller has new data available
in the form of a new state estimate. Algorithm 5.1 then finds that a different schedule and control
input combination is optimal. Figure 5.5d shows the transmission slot allocation distribution
during the simulation. It shows that, while the actuator that addresses the first subsystem in
(5.39) receives 80 % of the total attention, it receives the same amount of attention in the CFP
as the actuator of the second subsystem, which features lower eigenvalues. The actuator that
addresses the third subsystem in (5.39) receives the smallest amount of attention. This subsystem
also features marginally stable eigenvalues. However, the third subsystem still gets 20% of the
attention of the CFP.
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5.4.3 Performance of small coupled systems.

In this section, the performance of the presented controller-scheduler co-design algorithm is com-
pared through Monte Carlo simulation studies. We consider the NCS (5.39), that is used in
Section 5.4.2 where the actuators compete for one slot in the CFP and one slot in the CAP. The
disturbance ω (k) ∼ N (05, I5). The system is simulated with both a set-to-zero and a hold-input
strategy at the actuators. The hold-input strategy is described in Section 2.3.1. The probabilities
for successful transmissions are pCFP = 0.95, pCAP = 0.75. The state weighting penalty is in this
study chosen as R = I3, while the remaining parameters are as in Section 5.4.2.

The performance is analyzed by the empirical cost averaged over time, which for each simulation
is given by

cost = 1
M

[
M−1∑

k=0
‖x(k)‖2Q + ‖u(k)‖2R(γ(k))

]
, (5.41)

where Q and R (γ (k)) are the weighting matrices of the state and control signal, respectively, and
M is the length of the simulation. This is averaged over 100 simulations, each with M = 20 000
time-steps of the same system with different initial conditions and noise realizations.

The MPC co-design algorithm is compared to RR heuristics with different horizon lengths. We
select the horizon length to be equal to the scheduling length. The RR schedules are chosen as
(5.40),

S2 =






pCFP

pCAP

0






pCFP

0
pCAP





 S4 =






pCFP

pCAP

0






pCAP

0
pCFP






pCFP

pCAP

0







0
pCFP

pCAP





 ,

S5 =






pCFP

pCAP

0






pCAP

0
pCFP






pCFP

pCAP

0






pCAP

pCFP

0






pCAP

0
pCFP





 .

These RR scheduling sequences are selected intuitively. For the current system, it is relatively
straightforward to select a feasible RR scheduling sequence. However, for larger systems, it can
become a difficult task to design a reasonably performing RR scheduling sequence. Also, it is
worth noting that there might be scheduling sequences for the RR algorithm that result in a
better performance than illustrated. Also, it is not possible to utilize a length 1 RR scheduling
sequence for the system (5.39), since there exists no length 1 scheduling sequence that results
in a controllable system. Refer to Section 6.1.4 for more details concerning controllability and
scheduling.

The results of the simulations are shown in Figure 5.7a, where results for both a set-to-zero
and a hold-input policy at the actuators are illustrated. In both situations the simulations show,
that the online scheduler and controller co-design algorithm, which is described in Algorithm 5.1
provides significantly better performance than the offline RR design. Also, the performance of the
algorithms increases as the optimization horizon N increases. The biggest gains are however in
going from N = 1 to N = 2.

To further illustrate the importance of online scheduling when the system, besides Gaussian
noise, is affected by random and unmeasured additive disturbances, we add the disturbance χ(k) ∈
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(b) Unmeasured disturbance (5.42).

Figure 5.7: The empirical cost of the finite horizon controller and scheduler co-design implemented
using Algorithm 5.1. The RR schedules are added for comparison. In Figure 5.7a the RR with
hold-input for N = 2, attained a cost of 192 dB. In Figure 5.7b the RR with hold-input for N = 2
attained a cost of 84 dB.

Horizon length (N) card (Ξ) average set-to-zero average hold
1 6 6 6
2 36 36 36
3 216 215 216
4 1296 1270 1296
5 7776 7414 7768

Table 5.1: Maximum number of scheduling sequences to compare for computing (5.32) calculated
using (5.35). The next two columns show the average amount of scheduling sequences to check
when using the branch and bound method presented in Algorithm 5.3.

Rm to (5.1). Every element in the disturbance vector χ(k) is given by

χi(k) = ρi(k)υi(k) + ιi(k)χi(k − 1), (5.42)

where Pr {ρi(k) = 1} = 0.05, Pr {ιi(k) = 1} = 0.85, and the step magnitude υi(k) ∼ U(−10, 10)
is uniformly distributed with χi(−1) = 0. The noise generated by (5.42) is a random step function
with a random magnitude υi(k).

The results for systems that are affected by the disturbance Figure 5.7b. Both set-to-zero
and hold-input actuator policies are used. The online MPC scheduling and controller co-design
algorithms outperform the RR heuristic by a significant margin when the horizon length N > 1.
The performance of the MPC from Algorithm 5.1 with horizon length N = 1 is comparable to the
performance of the best performance of the RR algorithms. Recall, that the RR heuristic does not
feature online scheduling, thus increasing the horizon length does in this case not affect the online
computational requirements. It is worth noting, that the performance of the RR heuristic varies
significantly depending on which scheduling sequence is utilized. This is avoided completely when
Algorithm 5.1 is utilized, in which case the performance improves for longer horizons.

Table 5.1 shows the number of possible scheduling sequences for the different horizon lengths.
Further, the efficiency of the branch and bound algorithm, presented in Algorithm 5.3, is presented
as well. It here shows, that for the current system, there are no significant reductions in the
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computational requirements when the branch and bound method in Algorithm 5.3 is used.

5.4.4 Larger system

Next, we consider a larger system that contains three subsystems and four inputs. The model is
given by

A =




0.681 0.319 0.888 0.112 0 0 0 0
0.319 0.681 0.112 0.888 0 0 0 0
−0.559 0.559 0.681 0.319 0 0 0 0
0.559 −0.559 0.319 0.681 0 0 0 0

0 0 0 0 −0.72 0.72 0 0
0 0 0 0 0.889 −2.4 0 0
0 0 0 0 0 0 0.54 0.841
0 0 0 0 0 0 −0.841 0.54




(5.43)

and

B =




0.471 0 0 0
0.0286 0 0 0
0.888 0 0 0
0.112 0 0 0

0 5.09 0 0
0 0 6.29 0
0 0 0 0.46
0 0 0 0.841




, (5.44)

with ω (k) ∼ N (08, I8). This system has eigenvalues at 0.36 ± −0.93j, two at 1, −2.73, −0.40
and 0.54 ± 0.84j. The scheduler has access to one slot in the CFP and one in the CAP, and the
remaining parameters are as in Section 5.4.3. For this system, the RR scheduling sequences are
for N = 1, · · · , 5 selected as the scheduling sequence, that satisfies

SRRN , arg min
SN∈ΞN

JW (0,SN , U?N (SN )) .

Figure 5.8a shows that for system (5.43), the MPC co-design results in 15 dB lower cost than
the offline RR heuristic in the best case. In this setting, the performance of the hold-input strategy
is slightly reduced compared to the set-to-zero strategy. However when the horizon N = 1, the
MPC with hold-input results in a cost of 557 dB, which is significantly higher than for larger N .
When the system is affected by the disturbance (5.42), the online MPC co-design outperforms the
RR heuristic by more than 10 dB. Interestingly, in this setting, the hold-input performs on par
with set-to-zero when N > 1.

The number of scheduling sequences to check in the branch and bound algorithm are displayed
in Table 5.2. As with the results in Table 5.1 for system (5.39), the branch and bound algorithm in
Algorithm 5.3 results in only a minor reduction in the number of scheduling sequences to compare.
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(b) Unmeasured disturbance (5.42).

Figure 5.8: The empirical cost of the finite horizon controller and scheduler co-design implemented
using Algorithm 5.1. The RR schedules are added for comparison. In Figure 5.8a, the RR with
hold-input for N = 3, attained a cost of 2230 dB, while MPC with hold-input and N = 1 reached
557 dB. In Figure 5.8b the RR with hold-input for N = 3 attained a cost of 2233 dB and MPC
with hold-input and N = 1 reached 508 dB.

Horizon length (N) card (Ξ) average set-to-zero average hold
1 12 12 12
2 144 144 144
3 1728 1723 1728
4 20 736 20 125 20 685

Table 5.2: Maximum number of scheduling sequences to compare for computing (5.32) for sys-
tem (5.43) and (5.44) calculated using (5.35). The next two columns show the average amount
of scheduling sequences to check when using the branch and bound method presented in Algo-
rithm 5.3.

5.5 Summary

We have discussed and illustrated the advantages of online scheduling and controller co-design for
systems where the controller and actuators are connected over IEEE 802.15.4 based wireless net-
works. We considered multiple systems that share a finite amount of transmission bandwidth. The
transmission bandwidth is divided in a reliable CFP and a less reliable CAP. While transmission
in the CFP is preferred, the limit in the amount of transmission slots in the CFP motivates the use
of the less reliable CAP. We demonstrated that optimal scheduling and controller co-design takes
advantage of the network bandwidth that is available. This results in a significantly improved
performance compared to heuristic round robin (RR) schedules.

Simulation studies showed, that a longer prediction horizon length resulted in improved con-
trol performance. However, the computational complexity increases significantly. This limits the
practical applicability of the presented co-scheduling algorithm on large scale implementations. In
the next chapter, we extend these ideas and aim at providing a suitable choice for the final state
weighting of the cost function (5.25), such that good performance can be maintained at a reduced
online computational cost.
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Appendix

5.A Proof of Lemma 5.2.1

Proof. By the definition of the matrix inverse it follows that for every T , the inverse (M + T )−1 is
unique. To show that M† is unique, we have to show that T̄ is unique. To do this, assume there
exists a Q 6= T̄ that satisfies (5.3) to (5.9). It thus satisfies

QM = MQ = M.

This means by (5.8) that

QM = T̄M = QM +QT = T̄M + T̄ T

⇒ Q (M + T ) = T̄ (M + T )

⇒ Q (M + T ) (M + T )−1 = T̄

⇒ Q = T̄,

which contradicts the assumption that Q 6= T̄ .
Any non-full rank block diagonal matrix can be permuted using matrix P to have the form

M̄ = PMPT =
[
Mi 0
0 0

]
.

This means that T has to be on the form

T =
[
0 0
0 T1

]
.

Now for block diagonal matrix M̄ one T̄ that satisfies the conditions in Definition 5.2.1 is the
matrix

T̄ =
[
I 0
0 0

]
.

Recall that T̄ is unique. Now by the definition of inverses of partitioned matrices, see for example
[107, Lemma A.2] we have that

(M + T )−1 =
[
M−1
i 0
0 T−1

1

]

Pre- and post-multiplying this with T̄ results in

T̄ (M + T )−1
T̄ =

[
M−1
i 0
0 0

]
,

where M−1
i , which is unique by the definition of the matrix inverse. This proves uniqueness of the

inverse.
Condition (5.10) follows since

MM†M = MT̄ (M + T )−1
T̄M
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where from Definition 5.2.1 M = T̄MT̄ + T̄ T T̄ = T̄ (M + T ) T̄ , thus using symmetry and the
definitions in (5.3) to (5.9), we have that

MT̄ (M + T )−1
T̄M = T̄ (M + T ) T̄ T̄ (M + T )−1

T̄M

= T̄
(
MT̄ + T T̄

)
(M + T )−1

T̄M

= T̄
(
T̄M + T̄ T

)
(M + T )−1

M

= T̄ (M + T ) (M + T )−1
M

= T̄M = M.

Thus proving (5.10). Conditions (5.11) to (5.13) can be shown using a similar argument.

5.B Proof of Theorem 5.3.1

This proof follows by applying the dynamic programming algorithm [15]. Consider the cost (5.23)
for a horizon length N and a scheduling sequence SN ∈ S. Then, the cost (5.23) can, at any stage
0 ≤ k < N , be stated as

JW
(
x(k),Sk,N , U?k,N

)

= min
u(k)

E
{
‖x(k)‖2Q + ‖u(k)‖2R(γ(k)) + min

Uk+1,N

[
N∑

`=k+1
‖x (`) ‖2Q + ‖u (`) ‖2R(γ(`))

] ∣∣∣∣x (k) ; Sk,N
}

= min
u(k)

E
{
‖x(k)‖2Q + ‖u(k)‖2R(γ(k)) + JW

(
x (k + 1) ,Sk+1,N , U

?
k+1,N

) ∣∣∣∣x (k) ; Sk,N
}
. (5.B.1)

At stage N , the cost for x(N) and schedule S(N) is given by

JW (x(N), S(N)) = xT (N)Wx(N).

Now assume that at stage k + 1, the optimal cost for a known scheduling sequence Sk+1,N is of
the form

JW
(
x (k + 1) ,Sk+1,N , U

?
k+1,N

)
= xT (k + 1)Pk+1x (k + 1) + ck+1.

Then, at stage k, we have from (5.B.1) and (5.1)

JW
(
x(k),Sk,N , U?k,N

)
= min

u(k)
E
{
‖x(k)‖2Q + ‖u(k)‖2R(γ(k))

+ JW
(
Ax(k) +B(γ(k))u(k) + Fω(k),Sk+1,N , U

?
k+1,N

)∣∣∣∣x(k) ; Sk,N
}
.

Expanding this yields

JW
(
x(k),Sk,N , U?k,N

)
= min

u(k)
E
{
xT (k)

(
Q+ATPk+1A

)
x (k)

+ uT (k)
(
R (γ (k)) +BT (γ(k))P (k + 1)B(γ(k))

)
u(k) + 2uT (k)BT (γ (k))Pk+1Ax (k)

+ ωT (k)FTPk+1Fω (k) + ck+1

∣∣∣∣x (k) ; Sk,N
}
,
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where we used the fact that ω (k) is i.i.d and uncorrelated to x (k) and u (k). Distributing the
expectation yields

JW
(
x(k),Sk,N , U?k,N

)
= xT (k)

(
Q+ATPk+1A

)
x (k)

+ min
u(k)

uT (k)
[
E {R (γ (k)) ; S (k)}+ E

{
BT (γ(k))P (k + 1)B(γ(k)) ; S (k)

}]
u(k)

+ 2uT (k) E
{
BT (γ (k)) ; S (k)

}
Pk+1Ax (k) + trace

(
ΣωFTPk+1F

)
+ ck+1, (5.B.2)

where Σω is the covariance of ω (k). In (5.B.2), the term

E {B (γ (k)) ; S (k)} =
∑

s∈Zn
2

E {B (γ (k))|γ (k) = s}Pr {γ (k) = s ; S (k)}

=
∑

s∈Zn
2

B (s) Pr {γ (k) = s ; S (k)}

= B (S (k)) ,

and using the same arguments,

E {R (γ (k)) ; S (k)} = R (S (k)) .

Also

E
{
BT (γ (k))Pk+1B (γ (k)) ; S (k)

}

=
∑

s∈Zn
2

E
{
BT (γ (k))Pk+1B (γ (k))

∣∣γ (k) = s
}

Pr {γ (k) (k) = s ; S (k)}

=
∑

s∈Zn
2

BT (s)Pk+1B (s) Pr {γ (k) (k) = s ; S (k)}

= M (Pk+1, S (k)) ,

where M (Pk+1, S (k)) is defined in (5.28). Substituting this back into (5.B.2) yields

JW
(
x(k),Sk,N , U?k,N

)
= xT (k)

(
Q+ATPk+1A

)
x (k)

+ min
u(k)

uT (k) [R (S (k)) +M (Pk+1, S (k))]u(k)

+ 2uT (k)BT (s (k))Pk+1Ax (k) + trace
(
ΣωFTPk+1F

)
+ ck+1. (5.B.3)

Taking the gradient with respect to u (k) and setting this equal to 0 yields the optimal control

0 = [R (s (k)) +M (Pk+1, S (k))]u (k) +BT (S (k))Pk+1Ax (k)

u? (k) = − [R (S (k)) +M (Pk+1, S (k))]†BT (S (k))Pk+1Ax (k) . (5.B.4)

This leads to (5.26) and (5.27). The generalized inverse is used since the term

R (S (k)) +M (Pk+1, S (k))

can be singular. Substituting this back into (5.B.3) results in

JW
(
x(k),Sk,N , U?k,N

)
= xT (k)

(
Q+ATPk+1A−ATPk+1B (S (k))

× [R (S (k)) +M (Pk+1, S (k))]†BT (S (k))Pk+1A

)
x (k) + trace

(
ΣωFTPk+1F

)
+ ck+1.
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This equals

JW
(
x(k),Sk,N , U?k,N

)
= xT (k)Pkx (k) + ck, (5.B.5)

where Pk is given by (5.29), with PN = W and

ck = trace
(
ΣωFTPk+1F

)
+ ck+1

=
N−1∑

`=k
trace

(
ΣωFTP`+1F

)
. (5.B.6)

Substituting (5.B.6) into (5.B.5) and repeating the above until step 0 then leads to (5.30).
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Chapter 6

A periodic approach to scheduling and
control co-design

In this chapter, we extend the controller and scheduler co-design solution that is introduced in
Chapter 5. Mainly, we present methods that approximate the cost function (5.23) as the prediction
horizon goes to infinity. This is done by using a periodic assumption on the scheduling sequence.
While we present implementations that directly utilize these infinite horizon approximations, we
also present a method that combines the model predictive control (MPC) algorithm from Sec-
tion 5.3.3 with the periodic infinite horizon approximations. We show a number of stability results
and illustrate the performance gains compared to the algorithm that is presented in Chapter 5.

Section 6.1 provides the motivation behind the ideas that are proposed in this chapter. This is
followed by a brief summary of the networked control system (NCS) that is considered in Chapter 5.
We also provide a linear time-invariant (LTI) formulation of the system, that is utilized throughout
the remainder of this chapter. This LTI formulation allows for cleaner and easier expressions.
Section 6.2 revises the results from Section 5.3 using the LTI formulation. Section 6.3 presents
two methods to approximate the infinite horizon cost function. Implementations of the co-design
algorithms are presented in Section 6.4. This includes online MPC algorithms and offline scheduling
algorithms. Simulation studies in Section 6.5 illustrate the performance of the proposed designs.
Section 6.6 provides a summary of the results.

6.1 Introduction

In Chapter 5, we presented an optimal co-design method for the controller and scheduler for a
large, distributed system. The controller and system are connected through a bandwidth limited
IEEE 802.15.4 network that is affected by packet loss. The optimal co-design method in Section 5.3
is implemented as MPC. Recall, that the cost-function (6.21) considered in Section 5.3 has a finite
horizon. Simulation studies in Section 5.4 showed that longer horizon lengths resulted in increased
performance. Ideally, one would design the controller to minimize the cost function over an infinite
length horizon. However, as discussed in Sections 5.2 and 5.3, the scheduling part of the co-design
problem is combinatorial. Further, the complexity of the problem grows exponentially with the
horizon length. This makes it difficult, if not impossible, to evaluate the infinite horizon cost
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function. This is commonly referred to as the curse of dimensionality [15, Chapter 6].
One method to reduce the complexity of the scheduling problem is, to assume that the schedul-

ing sequence eventually converges to some form of periodic sequence. However, the period of that
sequence can be very long. It is therefore difficult to find the optimal period. Instead, we can
assume a period length, and compute the infinite horizon cost function for all possible scheduling
sequences that have this period length. However, the periodic scheduling sequence that minimizes
the infinite horizon cost function, might not be optimal.

To address this, we will based on ideas from MPC, combine the finite horizon co-design approach
presented in Section 5.3 with a suitable selection of the final state weighting W in (5.23). In
conventional MPC, the final state weighting is frequently designed using a solution to a Riccati
equation [17], [40], [62]. However, the system (5.20) presented in Section 5.2, is time-varying due
to the scheduling. Also, the Riccati recursion (5.31) is time-varying due to the scheduling. It is
therefore non-trivial to find a suitable Riccati equation to use as the final state weighting.

Based on the above discussion and inspired by the work [40], we will assume that after some
time, the scheduling sequence will converge to a periodic scheduling sequence with a fixed period.
We utilize these periodic scheduling sequences to approximate infinite horizon cost functions.
The idea is then, that the finite horizon cost function eventually will converge to this infinite
horizon cost approximation. This is implemented by using the solutions to the infinite horizon cost
approximations to design the final state weighting W in the finite horizon cost function (5.23).
This method is also known as the rollout algorithm, see for example [6], [15]. The results are
implemented in a MPC algorithm that provides good performance for short prediction horizons.
This results in a significant reduction in the computational requirements compared to Algorithm 5.1
which is presented in Section 5.3.3.

To simplify notation, we first present a LTI formulation of the time-varying system (5.20). After
revising the results from Section 5.3 for the LTI system, we present two methods to approximate
the infinite horizon cost function by using periodic scheduling sequences. We present both online
and offline scheduling co-designs that utilize the solutions to these infinite horizon approximations.

6.1.1 System setup

In this chapter, we consider the system (5.20) from Chapter 5, which is restated here

x(k + 1) = Ax(k) +B (γ (k))u(k) + Fω(k) (6.1a)

y (k) = Cx (k) + υ (k) .

In (6.1), x(k) ∈ Rm, u(k) ∈ Rn, y(k) ∈ Rp and A, B, F , C are matrices of appropriate dimen-
sions. The plant disturbance ω(k) ∼ N (0d,Σω) is zero-mean Gaussian with covariance Σω and
measurement disturbance υ(k) ∼ N (0p,Συ). The matrix B (γ (k)) is, as in (5.19), defined by

B (γ (k)) , B diag {γ (k)} , (6.2)

where the pair (A,B) is controllable and the density of γ (k) depends on the schedule S (k) i.e.

Pr {γj (k) = 1 ; sj} = sj (k) j ∈ (1, 2, · · · , n) .

In the above, Pr {a ; b} means that the distribution of a is parameterized by b.
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The schedule at time k is given by the length n vector

S (k) ,
[
s1 (k) , · · · , sn (k)

]T
∈ S, (6.3)

where, as in (5.17),

S ,




S =




s1
...
sn




∣∣∣∣∣∣∣∣
si ∈ {0, pCAP, pCFP}





(6.4)

and 0 ≤ pCAP ≤ pCFP ≤ 1. Denote the set of admissible schedules by Sa ⊂ S. An admissible
schedule satisfies that NCAP elements are pCAP and NCFP elements are pCFP, while the remaining
elements are zero. Recall that NCAP and NCFP are the number of slots that the scheduler can
allocate in the contention access period (CAP) and contention free period (CFP), respectively. For
more details, refer to Section 5.2.1. The set Sa is formally stated in (5.18), and is repeated below

Sa ,



S ∈ S

∣∣∣∣∣∣

n∑

i=1
1pCAP (si) = NCAP ∧

n∑

j=1
1pCFP (sj) = NCFP



 ,

where the indicator function 1a (b) = 1 if a = b and zero otherwise.
In this chapter, we want to co-design an optimal controller and scheduler, such that the selected

controller and scheduler minimize a given cost function. We will first present a time-invariant for-
mulation of the above problem, and introduce scheduling sequences that are repeated periodically.
Using this LTI formulation, we present a time-invariant revision of the result that is presented in
Section 5.3.

The state estimator is designed as in Section 5.2.2 with the optimal state estimate given by
(5.14). All measurements are transmitted during the CAP, and the superframe structure from
Figure 5.3 is utilized. The separation principle also holds in the current setting. Therefore, the
controller design is done using state feedback. In the simulation studies in Section 6.5, the state
feedback is replaced by the optimal state prediction.

6.1.2 Periodic scheduling

Denote the periodic scheduling sequence with period T by

S , (S (`) ∈ Sa : ` = 0, · · · , T − 1) .

This means that S (T ) = S (0), S (T + 1) = S (1) and so on.
Denote a length NT , with N being possibly infinity, scheduling sequence that contains the

periodic scheduling sequence S repeatedly by

SN , (S : ` = 1, · · · , N) .

Define the length NT scheduling sequence SN with the first k schedules trimmed of by

Sk,N ,
(
S (k % T ) , · · · , S (T − 1) ,SN−d k

T e

)
, (6.5)
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where T is the period length, dxe rounds x up to its nearest larger integer and % is the modulo
operator, such that a%b returns the remainder after division of a/b. The first part in (6.5) contains
the schedules (S (k % T ) , S (k + 1 % T ) , · · · , S (T − 1)).

We will now present a cyclic formulation of the system (6.1a) that uses a periodic scheduling
sequence (6.5).

6.1.3 A time-invariant formulation

The system in (6.1a) is time-varying since the schedule S (k) can change at every time-step.
Further, (6.1a) is stochastic due to the noise ω (k) and the packet loss γ (k). The distribution
of the packet loss γ (k) is parameterized by the schedule S (k). Thus, the expected value of the
input matrix B (γ (k)) will change over time, i.e. Pr {γ (k) = 1 ; S (k)} = S (k). However, when a
length T scheduling sequence S is periodic, E {B (γ (k)) ; S} = E {B (γ (k + T )) ; S}, where

E {A ; S} ,
∫
APr {A ; S} dA.

In this section, we reformulate system (6.1a) to be stochastic, but time-invariant. Using this, we
obtain an augmented input matrix B̄ (γ̄ (k)), such that for all k,

E
{
B̄ (γ̄ (k)) ; S

}
= E

{
B̄ (γ̄ (k + 1)) ; S

}
.

We follow the cyclic formulation principles presented in [16, Section 6.3].
Define the augmented state vector

x̄ (k) ,




x̄0 (k)
x̄1 (k)

...
x̄T−1 (k)



∈ RmT , (6.6)

such that, as in Table 6.1, the state x (k) at each time k is given by

x̄i (k) =
{

x (k) if k % T = i

0 otherwise.
(6.7)

This means, that all elements of the augmented state x̄ (k) are 0, except for x̄i (k). Define the
augmented system matrices

Ā ,




0 0 · · · 0 A

A 0 · · · 0 0

0 A
. . . ...

...
...

... . . . 0
...

0 0 · · · A 0




∈ RmT×mT , F̄ ,




0 0 · · · 0 F

F 0 · · · · · · 0

0 F
. . . ...

...
...

... . . . 0
...

0 0 · · · F 0




∈ RmT×dT

and

B̄ (γ̄) ,




0 0 · · · 0 B (γ̄T−1)
B (γ̄0) 0 · · · 0 0

0 B (γ̄1) . . . ...
...

...
... . . . 0

...
0 0 · · · B (γ̄T−2) 0




∈ RmT×nT . (6.8)
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Time-varying → LTI LTI → Time-varying

x̄i (k) =
{
x (k) if i = k % T
0 otherwise x (k) = x̄i (k) if k % T = i

ūi (k) =
{
u (k) if i = k % T
0 otherwise u (k) = ūi (k) if k % T = i

γ̄i (k) =
{
γ (k) if i = k % T
0 otherwise γ (k) = γ̄i (k) if k % T = i

ω̄i (k) =
{
ω (k) if i = k % T
0 otherwise ω (k) = ω̄i (k) if k % T = i

Table 6.1: Map between the time-varying and LTI formulation of the system (6.1a). Here k % T
returns the remainder after division of k/T .

Define the vectors

ū (k) ,
[
ūT0 ūT1 · · · ūTT−1

]T
∈ RnT (6.9)

γ̄ (k) ,
[
γ̄T0 γ̄T1 · · · γ̄TT−1

]T
∈ RnT (6.10)

ω̄ (k) ,
[
ω̄T0 ω̄T1 · · · ω̄TT−1

]T
∈ RdT .

The mappings between the LTI and time-varying formulation are stated in Table 6.1. It is worth
noting that, as with x̄ (k), all elements in ū (k), γ̄ (k) and ω̄ (k) are zero, besides elements ūi (k),
γ̄i (k) and ω̄i (k), where i = k % T .

The above formulation and the mappings in Table 6.1 allow us to restate the time-varying
system (6.1a) as the LTI system

x̄ (k + 1) = Āx̄ (k) + B̄ (γ̄ (k)) ū (k) + F̄ ω̄ (k) , (6.11)

where

ω̄ (k) ∼ N
(
0, Σ̄ω̄ (k)

)
.

The covariance of ω̄ is, using the maps in Table 6.1, given by

Σ̄ω̄ (k) , diag
{[
10 (k % T ) Σω · · · 1T−1 (k % T ) Σω

]}
∈ RdT×dT , (6.12)

where the indicator function 1i (k) = 1 if k = i and zero otherwise. Further, define

Σ̄ω̄ , diag
{[

Σω · · · Σω
]}
∈ RdT×dT . (6.13)

Remark 6.1.1. Note that in the definitions in the first column of Table 6.1, the LTI formulation
x̄j (k) = 0, j 6= k % T is merely introduced to ensure that the LTI vector x̄ (k) is well defined.
However, it is not necessary to force x̄j (k) = 0 and, in fact, not forcing this allows for the
simultaneous computation of all cyclic shifts in a periodic schedule. This also holds true for ū, γ̄
and ω̄.

For the periodic scheduling sequence S with period T , define the augmented schedule as

S̄ ,
[
S (0)T S (1)T · · · S (T − 1)T

]T
∈ S̄T , (6.14)
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where the set with period T

S̄T ,




S̄ =




S1
...
ST




∣∣∣∣∣∣∣∣
Si ∈ S




,

and S is defined in (6.4). Define S̄Ta as the set of admissible schedules with period T as

S̄Ta ,
{
S̄ ∈ S̄T

∣∣Si ∈ Sa
}

where Sa is defined in (6.3). Note that (6.14) does not depend on the time k. Thus, we have for
every entry of γ̄ (k) that

Pr
{
γin+j (k) = 1 ; S̄

}
= sin+j

i = 0, · · · , T − 1
j = 0, · · · , n− 1.

(6.15)

In the above, sin+j is the j’th element of the schedule S (i) in the augmented schedule S̄, and the
vector γ̄ (k) ∈ ZnT2 , where the binary set Z2 , {0, 1}. It follows directly from (6.15) that

E
{
γ̄ (k) ; S̄

}
= S̄.

Consider a control law

ū (k) = −L̄ (k) x̄ (k) , (6.16)

where

L̄ (k) , diag
{[
L̄0 (k) · · · L̄T−1 (k)

]}
∈ RnT×mT . (6.17)

We can then state the closed-loop response of (6.11) with control law (6.16) as

x̄ (k + 1) = H̄L̄(k) (γ̄(k)) x̄ (k) + F̄ ω̄, (6.18)

with

H̄L̄ (γ̄) , Ā− B̄ (γ̄) L̄. (6.19)

For easier notation, in the remainder of this chapter we omit the time indexing in γ̄ (k) when not
needed.

Also, by the maps in Table 6.1 one can easily obtain the time-varying control law Lk for the
system (6.1a) from the block diagonal of the LTI control law (6.16). The time-varying control laws
are then given by

u (k) = −L̄k%T (k)x (k) .

Finally, we define the selector vector ei, where i = 0, · · · , T − 1, as the length mT vector that
contains ones in the index range im to (i + 1)m − 1, with m being the length of x (k), and zeros
elsewhere. Then, define the selector matrix

ēi , diag {ei} . (6.20)

This means that, for example. ēk%T x̄ (k) ensures that only the entries that correspond to x (k)
in x̄ (k) are non-zero. These definitions will be used in some of the results presented later in this
chapter.

98



6.2. Finite horizon stochastic control

Remark 6.1.2. Another common used method to reformulate periodic (or cyclostationary) systems
into time-invariant systems is lifting. See for example [16, Section 6.2]. However, in the current
setting, the lifted formulation will not result in control laws of the desired diagonal form. We, for
this reason, resort to the cyclic formulation that is presented above.

6.1.4 A few notes on controllability

In the system (6.11), the input matrix B̄ (γ̄) depends on the schedule S̄. This can affect the
controllability and stabilizability of system (6.11) for particular schedules. Therefore, the following
notion on stabilizable schedules is introduced.

Definition 6.1.1 (Stochastic stabilizable schedule). A schedule S̄ ∈ S̄T is called a stochastic
stabilizable schedule for system (6.11) if there exists control laws on the feedback form ū (k) =
−L̄x̄ (k), k = (0, 1, · · · ), such that

lim
k→∞

E
{
‖x̄ (k)‖2 ; S̄

}
<∞.

It is however not straight forward to verify whether Definition 6.1.1 is satisfied for a schedule
S̄. In fact, we are not familiar with suitable testable conditions to check stochastic stabilizability
for the system (6.11) that does not require the simultaneous design of control laws. However,
recall from Section 2.3, that stochastic stabilizability requires the pair (A,B) to be stabilizable
in a deterministic sense. A particular schedule S̄ ∈ ST does not necessarily address all actuators.
Thus, for some elements si in the schedule S̄, the conditional probability Pr {γi = 1 ; si} = 0.
Therefore, by (6.2) and (6.8) some rows of the matrix B̄ (γ̄) equal zero, i.e. b̄j = 0 for some j.
Thus, deterministic stabilizability of the pair

(
Ā,E

{
B̄ (γ̄) ; S̄

})
is a necessary condition for S̄

to be a stochastic stabilizable schedule. This allows for an easy method to discard a number of
schedules that will not lead to a stochastic stabilizable system.

An easy to check method for deterministic controllability (see Definition 2.3.1 in Chapter 2) is
that the controllability matrix C is full rank [4, Appendix B]. The controllability matrix for the
pair

(
A,E

{
B̄ (γ̄) ; S̄

})
is defined by

C ,
[
E
{
B̄ (γ̄) ; S̄

}
ĀE

{
B̄ (γ̄) ; S̄

}
· · · ĀmT−1 E

{
B̄ (γ̄) ; S̄

}]
.

However, if C is not full rank for a particular schedule S̄, the schedule is stabilizable by Defini-
tion 2.3.2 if the uncontrollable subspace of Ā is stable. If a schedule S̄ is not stabilizable in a
deterministic sense, it can be discarded.

Next, we present a LTI version of the optimal control problem that we considered in Section 5.3.

6.2 Finite horizon stochastic control

Consider the system (6.11) and the cost function (5.23). Then, for a length NT scheduling sequence
SN with period T we can, using the time-invariant formulation in Section 6.1.3, restate the cost
function (5.23) for a horizon length NT to

J̄W
(
x̄ (0) , S̄, ŪNT

)
= E

{
‖x̄ (NT )‖2W̄ +

NT−1∑

`=0
‖x̄ (`)‖2Q̄ + ‖ū (`)‖2R̄(γ̄(`))

∣∣∣∣∣x̄ (0) ; S̄
}
, (6.21)
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where x̄ (k) and ū (k) are given by (6.6) and (6.9), respectively. The cost (6.21) is conditioned by
x̄ (0) and the schedule S̄. The length NT sequence of control inputs is defined as

ŪNT , (ū (`) : ` = 0, · · · , NT − 1)

and the weighting matrices by

Q̄ , diag
{[
Q · · · Q

]}
∈ RmT×mT Q ≥ 0

R̄ (γ̄) , diag
{[
R (γ̄0) · · · R (γ̄T−1)

]}
∈ RnT×nT R ≥ 0

W̄ , diag
{[
W · · · W

]}
∈ RmT×mT W ≥ 0,

with γ̄ given in (6.10). Also note, that for a periodic schedule S̄ ∈ S̄T , E
{
γ̄ (k) ; S̄

}
does not

depend on k. The time-indexing k in γ̄ (k) is therefore omitted in the remainder of the chapter.
It is, using the maps in Table 6.1, easy to verify that (6.21) and (5.23) in Section 5.3 are

equivalent. We want to find the optimal sequence of controls Ū?NT and optimal admissible periodic
schedule S̄?T that satisfy the joint minimization problem

(
Ū?NT , S̄

?
T

)
= arg min
ŪNT ,S̄∈S̄T

a

J̄W
(
x̄ (0) , S̄, ŪNT

)
. (6.22)

This then results in the optimal cost

J̄?W (x̄ (0)) , J̄W
(
x̄ (0) , S̄?, Ū?NT

)
.

6.2.1 Solution to the minimization problem

The joint optimization problem (6.22) is a mixed integer problem, where the variable S̄ is discrete.
Recall, that each element sj of S̄ takes values in the set {0, pCAP, pCFP}. This makes (6.22) a
difficult problem to solve. However, as in Section 5.3.1, we can rewrite problem (6.22) to separate
the integer and the continuous part of the optimization problem. This yields

J̄?W (x̄ (0)) = min
S̄∈S̄T

a

[
min
ŪNT

[
J̄W

(
x̄ (0) , S̄, ŪNT

)]]
,

which allows us to first solve the inner problem for each possible periodic schedule S̄, and then
find the optimal periodic schedule afterwards. The inner problem is convex for each S̄ and has an
analytical solution, as we present next.

Theorem 6.2.1. For a known periodic schedule S̄ ∈ S̄T with period T , the optimal controls are
given by the policy

ū (k) = −L̄? (k) x̄ (k) k = 0, · · · , NT − 1, (6.23)

where the control gain is given by the nN ×mN block diagonal matrix

L̄? (k) =
[
R̄
(
S̄
)

+M
(
P̄k+1, S̄

)]†
B̄
(
S̄
)
P̄k+1Ā, (6.24)
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with † meaning the pseudo inverse defined in Definition 5.2.1.1, and for some square matrix X,

M
(
X, S̄

)
,
∑

s∈ZnT
2

B̄ (s)T XB̄ (s) Pr
{
γ̄ = s ; S̄

}
. (6.25)

The mT ×mT block diagonal matrix P̄k is given by the recursion

P̄k = Q̄+ ĀT P̄k+1Ā− ĀT P̄k+1B̄
(
S̄
) [
R̄
(
S̄
)

+M
(
P̄k+1, S̄

)]†
B̄
(
S̄
)T
P̄k+1Ā (6.26)

with P̄NT = W̄ . This results in the optimal cost for the known periodic schedule S̄

J̄W
(
x̄ (0) , S̄, Ū?NT

)
= x̄ (0)T P̄0x̄ (0) +

NT−1∑

`=0
trace

(
Σ̄ω̄ (`) F̄T P̄`+1F̄

)
,

where Σ̄ω (k) is defined in (6.12).

Proof. The proof is presented in Appendix 6.A.

Theorem 6.2.1 presents a closed form solution for the optimal controls and optimal cost for a
known schedule S̄. However, note that, as in Theorem 5.3.1, (6.23), (6.24) and (6.26) in Theo-
rem 6.2.1 all depend on the particular schedule S̄. We therefore define the functions

P̄k (S) , Q̄+ ĀT P̄k+1 (S) Ā

− ĀT P̄k+1 (S) B̄ (S)
[
R̄ (S) +M

(
P̄k+1 (S) , S

)]†
B̄ (S)T P̄k+1 (S) Ā

L̄?k (S) ,
[
R̄ (S) +M

(
P̄k+1 (S) , S

)]†
B̄ (S) P̄k+1 (S) Ā,

such that for a given schedule S̄, the control input is given by

ū (k) = −L̄?k
(
S̄
)
x̄ (k) . (6.27)

Also, denote the sequence of optimal control laws by

Ū?NT
(
S̄
)
,
(
−L̄?`

(
S̄
)
x̄ (`) : ` = 0, · · · , NT − 1

)
.

Then, the optimal admissible schedule S̄? can be found by

S̄? = arg min
S̄∈S̄T

a

[
J̄W

(
x̄ (0) , S̄, Ū?NT

(
S̄
))]

= arg min
S̄∈S̄T

a

[
x̄ (0)T P̄0

(
S̄
)
x̄ (0) +

NT∑

`=1
trace

(
Σ̄ω (`) F̄T P̄`

(
S̄
)
F̄
)
]
. (6.28)

This results in the length NT sequence of optimal co-design control laws

Ū?NT
(
S̄?
)

=
(
−L̄?`

(
S̄?
)
x̄ (`) : ` = 0, · · · , NT − 1

)
.

As discussed in Section 5.3.3, possible performance gains can be achieved by selecting the final
state weighting W carefully. For conventional MPC algorithms, W is often related to an optimum
of some infinite horizon cost function [15], [37], [56]. This motivates the use of an infinite horizon
cost approximation to select the weighting W , which is presented in Section 6.3.

Next, we link the results that we obtained in this section to the results for the time-varying
system (6.1a) that was obtained in Section 5.3.1.

1Since S̄ is zero for actuators that we do not address, the matrices R̄
(
S̄
)

and M
(
P̄k+1, S̄

)
are in general

singular.
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6. A periodic approach to scheduling and control co-design

6.2.2 Link between time-varying and LTI formulation

The optimal controls for system (6.1a) (and (5.20) in Section 5.1) can be obtained directly from
(6.27) using the maps in Table 6.1. For the scheduling sequence Sk,N with period T , this results
in the time-varying control laws from Theorem 5.3.1, which are of the form

u (k) = −L?k (Sk,N )x (k) ,

where, as described in (6.17) and the definitions in (6.7) and (6.9), the LTI control law at each
time k is of the form

L̄?k
(
S̄
)

= diag
{[

0n,m · · · 0n,m L?k (Sk,N ) 0n,m · · · 0n,m
]}

. (6.29)

The control law L?k (Sk,N ) from Theorem 5.3.1 for the time-varying system (6.1a) appears on the
i’th n × m block on the diagonal of L̄?k

(
S̄
)

in (6.29), where i = k % T . The schedules in the
sequence SN are extracted directly from S̄, which is defined in (6.14).

The LTI matrix P̄k
(
S̄
)

is for k = (0, · · · , NT − 1) structured as

P̄k
(
S̄
)

= diag
{[

0m,m · · · 0m,m Pk (Sk,N ) 0m,m · · · 0m,m
]}

,

with the time-varying recursion (5.31) appearing on the i’th m×m block of P̄k
(
S̄
)

where i = k%T .

Remark 6.2.1. Note, that while the dimension of the matrix (6.26) in the cost (6.28) is mT×mT ,
the matrix is sparse. In fact, only one m ×m diagonal block is non-zero. Therefore, the online
computational cost for computing (6.28) is similar to the cost for computing (5.32), which is given
by (5.37).

It is worth noting, that the optimal controls and solutions to the recursion (6.26) in Theo-
rem 6.2.1 can be computed simultaneously for all possible cyclic rotations of a scheduling sequence
ST . Consider a periodic scheduling sequence SN , as described in Section 6.1.2, and a horizon
length of NT , N ∈ N. Denote the cyclic shift of the periodic schedule S by ` steps

S (`) , (S (`) , · · · , S (T − 1) , S (0) , · · · , S (`− 1)) ` ∈ {0, · · · , T − 1} .

And denote for the length NT scheduling sequence with periodic scheduling sequence S (`) re-
peated N times and starting from S (k) by Sk,N (`). Then, if we compute the controller using
Theorem 6.2.1, but omit the mappings from the time-varying to LTI formulation in the first col-
umn of Table 6.1, the vector L̄?k

(
S̄
)

will be of the form

L̄?k
(
S̄
)

= diag
{[
L?k (Sk,N (0)) L?k (Sk,N (1)) · · · L?k (Sk,N (T − 1))

]}
.

For a phase offset 0 ≤ ` < T , the control laws for the time-varying system (6.1a) are found as the
i = (k + `) % T n ×m block on the diagonal of L̄k

(
S̄
)
. Similarly, the solution to the recursion

(6.26) is at each time-step given by

P̄k
(
S̄
)

= diag
{[
Pk (Sk,N (0)) Pk (Sk,N (1)) · · · Pk (Sk,N (T − 1))

]}
, (6.30)

where for a phase offset `, the solution to the time-varying recursion (5.31) for each k is found on
the i’th diagonal of P̄k

(
S̄
)

with i = (k+ `) %T . Then, the time-varying cost (5.30) for each phase
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6.3. Infinite horizon approximation

0 ≤ ` < T of a scheduling sequence SN (`), can be stated as

JW (x (0) ,SN (`) , U?NT (SN (`))) = x (0)T P0 (SN (`))x (0) +
NT∑

k=1
trace

(
ΣωFTPk (Sk,N (`))F

)

= x (0)T P0 (SN (`))x (0) +
NT∑

k=1
trace

(
Σ̄ω̄ (k + `) F̄T P̄k

(
S̄
)
F̄
)
,

where Pk can be found on the diagonal of (6.30). The optimal controls are then given by

uk = −L?k
(
S?k,N (`)

)
x (k) .

6.3 Infinite horizon approximation

The optimal controls and scheduling sequence that minimize the finite horizon cost function (5.23)
in Section 5.3, tend to result in improved control performance when the prediction horizon N is
increased. This is illustrated by the simulations in Section 5.4. Increasing N in (5.23) corresponds
to increasing the period T in the LTI cost function (6.21). In (6.21), we ideally want to let
T →∞, such that the control cost is minimized over all time. Letting T →∞ means, that there
is no periodic assumption on the scheduling sequence that minimizes the cost function. However,
recall that the set S̄Ta of scheduling sequences is a discrete set. To find the optimal scheduling
sequence and control law, one has to solve a combinatorial optimization problem, see (6.28). In
this optimization problem, every possible scheduling sequence in the set S̄Ta has to be tested. As
shown in Section 5.3.4, the number of scheduling sequences in this set grows exponentially with
the period T . This makes it prohibitive, if not impossible, to minimize (6.21) for large T .

However, recall that in (6.21), the prediction horizon is parameterized by both T and N , where
N indicates the number of periods T to optimize over. If we here, instead of letting T →∞, choose
to fix T and let N → ∞, we obtain an approximation of the infinite horizon cost function under
the assumption that the optimal scheduling sequence has period T . By fixing T , the number of
possible scheduling sequences remains bounded and the optimal solution can be found. We present
two methods which approximate the infinite horizon cost function by assuming periodic scheduling.

A drawback with the above mentioned approach is that we force the scheduling sequence to
be periodic. While the optimal scheduling sequence can be periodic, we do not know the period.
Also, we do not know whether the optimal scheduling sequence is periodic from the initial state
k, or first becomes periodic after some time. To take this into account, we, inspired by the work
[40], propose a method that for some steps, say k+K, where K ≥ 1, finds the optimal scheduling
sequence among all possible length K scheduling sequences. We then assume, that after K + 1
steps, the optimal scheduling sequence resorts to a periodic scheduling sequence with a fixed period
T . This method is also referred to as the rollout method [6], [15]. We present a co-design algorithm
that utilizes this approach in Section 6.4.

In this section we present two methods to approximate the infinite horizon cost for a periodic
scheduling sequence with a fixed period. We present co-design algorithms that utilize the solutions
to the infinite horizon approximations in Section 6.4.
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6. A periodic approach to scheduling and control co-design

6.3.1 Discounted cost formulation

The first approach to an infinite horizon co-design cost function is the discounted cost. This cost
function will reduce the cost penalty on future states. We consider the discounted cost function

J̄d
(
x̄ (0) , S̄, ŪNT

)
, E

{
NT∑

`=0
α`
[
‖x̄ (`)‖2Q̄ + ‖ū (`)‖2R̄(γ̄)

]∣∣∣∣∣x̄ (0) ; S̄
}
. (6.31)

where α ∈ (0, 1) is the discounting factor. Lower values of α will penalize future state less than
more recent states. We want to find the optimal controls and schedule that satisfy

(
S̄?T , Ū

?
NT

)
, arg min
S̄∈S̄T

a ,ŪNT

J̄d
(
x̄ (0) , S̄, ŪNT

)
.

Similar to the linear quadratic (LQ) cost function in Section 6.2, we can split the joint optimization
problem to

(
S̄?T , Ū

?
NT

)
= arg min

S̄∈S̄T
a

[
arg min
ŪNT

J̄d
(
x̄ (0) , S̄, ŪNT

)
]
. (6.32)

This means that we for a known scheduling sequence S̄ can find the sequence of optimal control
laws

Ū?NT , (ū? (`) : ` = 0, · · · , NT − 1)

by

Ū?NT
(
S̄
)

= arg min
ŪNT

J̄d
(
x̄ (0) , S̄, ŪNT

)
.

6.3.1.1 Solution

This leads to the following result.

Lemma 6.3.1. For a known schedule S̄ ∈ S̄T and horizon length N , the optimal control laws that
minimize the discounted cost (6.31) are given by

ū? (k) = −L̄?kx̄ (k) k = 0, · · · , NT − 1

where the control gains are given by

L̄?k =
[

1
α
R̄
(
S̄
)

+M
(
P̄k+1, S̄

)]†
B̄
(
S̄
)T
P̄k+1Ā

where

P̄k−1 = Q̄+ αĀT P̄kĀ− αĀT P̄kB̄
(
S̄
) [ 1
α
R̄
(
S̄
)

+M
(
P̄k, S̄

)]†
B̄
(
S̄
)T
P̄kĀ (6.33)

with M (P, S) defined in (6.25). This results in the optimal cost

J̄d
(
x̄ (0) , S̄, Ū?NT

)
= x̄ (0)T P̄0x̄ (0) +

NT∑

t=1
α` trace

(
Σ̄ω̄ (t− 1) F̄T P̄tF̄

)
.
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6.3. Infinite horizon approximation

Proof. The proof is found in Appendix 6.B.

We want minimize the cost (6.31) as the horizon N →∞. Define the infinite length sequence
of control laws by

Ū∞ , (ū (`) : ` = 0, 1, · · · ) , (6.34)

such that for a schedule S̄ ∈ S̄Ta the cost

J̄d
(
x̄ (0) , S̄, Ū?∞

)
= min

Ū∞

J̄d
(
x̄ (0) , S̄, Ū∞

)
(6.35)

where the sequence of optimal control laws

Ū?∞ , (ū? (`) ; ` = 0, 1, · · · )

satisfy

Ū?∞
(
S̄
)

= arg min
Ū∞

J̄d
(
x̄ (0) , S̄, Ū∞

)
.

This leads to the following result:

Theorem 6.3.2. Suppose that for a known periodic schedule S̄ ∈ S̄T the limit limN→∞ P̄N exists.
Then, the optimal control laws that minimize the infinite horizon discounted cost function (6.35)
are given by

ū (k) = −L̄?dx̄ (k) k = 0, 1, · · ·

with the control gain given by

L̄?d =
[

1
α
R̄
(
S̄
)

+M
(
P̄, S̄

)]†
B̄
(
S̄
)T
P̄ Ā. (6.36)

The matrix P̄ is the solution to the discounted Riccati equation which satisfies

P̄ = Q̄+ αĀT P̄ Ā− αĀT P̄ B̄
(
S̄
) [ 1
α
R̄
(
S̄
)

+M
(
P̄, S̄

)]†
B̄
(
S̄
)T
P̄ Ā. (6.37)

This results in the optimal discounted cost

J̄d
(
x̄ (0) , S̄, Ū?∞

)
= x̄ (0)T P̄ x̄ (0) +

T∑

t=1

αt

1− αT trace
(
Σ̄ω̄ (t− 1) F̄T P̄ F̄

)
. (6.38)

Proof. The proof is presented in Appendix 6.C.

The optimal scheduler and controller co-design for the discounted cost function is then done
by computing

S̄? = arg min
S̄∈S̄T

a

J̄d
(
x̄ (0) , S̄, Ū?∞

(
S̄
))
, (6.39)

which yields the optimal control law

ū? (k) = −L̄?d
(
S̄?
)
x̄ (k) k ∈ N. (6.40)

This results in the optimal discounted cost

J̄?d (x̄ (0)) , J̄d
(
x̄ (0) , S̄?, Ū?∞

(
S̄?
))
. (6.41)
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6. A periodic approach to scheduling and control co-design

Remark 6.3.1. The solution to the discounted Riccati equation (6.37) can be obtained as the
iterative solution to (6.33). Note however, that it is not guaranteed that a solution to P̄ exists for
every schedule S̄. Also, the existence of a solution to P̄ does not guarantee closed-loop stability.
Refer to [14] for more information on the existence of solutions to (6.37).

One drawback with using the discounted cost is, that a finite optimal cost (6.41) does not
guarantee closed-loop stability. Next, we present a cost function that instead penalizes the long-
run average cost.

6.3.2 Averaged infinite horizon

In this section we co-design the optimal controller and scheduler to minimize the averaged cost
function

J̄a
(
x̄ (0) , S̄, ŪNT

)
,

1
NT

E
{
NT∑

`=0

[
‖x̄ (`)‖2Q̄ + ‖ū (`)‖2R̄(γ̄)

]∣∣∣∣∣x̄ (0) ; S̄
}
. (6.42)

We want to find the optimal control laws and schedule that satisfy
(
S̄?, Ū?NT

)
= arg min
S̄∈S̄T

a ,ŪNT

J̄a
(
x̄ (0) , S̄, ŪNT

)
.

This joint optimization problem can also be rewritten to the sequential optimization problem

S̄? = arg min
S̄∈S̄T

a

min
ŪNT

J̄a
(
x̄ (0) , S̄, ŪNT

)

Ū?NT
(
S̄?
)
, arg min

ŪNT

J̄a
(
x̄ (0) , S̄?, ŪNT

)
.

This results in the optimal periodic cost

J̄?a (x̄ (0)) , J̄a
(
x̄ (0) , S̄?, Ū?NT

(
S̄?
))
.

6.3.2.1 Solution

We have the following result:

Lemma 6.3.3. For a known schedule S̄ ∈ S̄T and horizon length N , the optimal averaged cost is
given by

J̄a
(
x̄ (0) , S̄, Ū?NT

)
= 1
NT

x̄ (0)T P̄0x̄ (0) + 1
NT

NT−1∑

`=0
trace

(
Σ̄ω̄ (`) F̄T P̄`+1F̄

)
, (6.43)

where P̄k is given by (6.26). This results in the optimal control laws (6.23) with control gains
(6.24).

Proof. The proof is presented in Appendix 6.D.

The optimal infinite horizon cost (6.42) for a known schedule and an infinite length sequence
of controls (6.34) is given by

J̄a
(
x̄ (0) , S̄, Ū?∞

)
= min

Ū∞

J̄a
(
x̄ (0) , S̄, Ū∞

)
. (6.44)

The infinite length sequence Ū?∞ that minimizes (6.44) is presented in the next theorem.
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Theorem 6.3.4. Suppose that for a known schedule S̄ ∈ S̄T the limit limN→∞ P̄N exists, where
P̄k is given in (6.26). Then, the optimal control law, that minimizes the averaged cost function
(6.44), is given by

ū (k) = −L̄?ax̄ (k) k = 0, 1, · · ·

with the control gain

L̄?a =
[
R̄
(
S̄
)

+M
(
P̄, S̄

)]†
B̄
(
S̄
)T
P̄ Ā. (6.45)

Here, P̄ is the solution to the Riccati equation

P̄ = Q̄+ ĀT P̄ Ā− ĀT P̄ B̄
(
S̄
) [
R̄
(
S̄
)

+M
(
P̄, S̄

)]†
B̄
(
S̄
)T
P̄ Ā. (6.46)

This results in the optimal cost

J̄a
(
S̄, Ū?∞

)
= 1
T

T−1∑

t=0
trace

(
Σ̄ω̄ (t) F̄T P̄ F̄

)
. (6.47)

Proof. The proof is presented in Appendix 6.E.

The optimal schedule is then found as

S̄? = arg min
S̄∈S̄T

a

J̄a
(
S̄, Ū?∞

(
S̄
))
, (6.48)

which results in the optimal control law

ū (k)? = −L̄?a
(
S̄?
)
x̄ (k) k = 0, 1, · · · .

It is worth noting that for the averaged cost, the optimal schedule does not depend on the state x̄.

6.3.2.2 Stability

For the averaged cost (6.42), we show that for a schedule S̄, the existence of a solution to the
Riccati equation (6.46) is a necessary and sufficient condition for mean square stability (MSS) of
the closed-loop system. This is presented in the following result.

Theorem 6.3.5. For a schedule S̄ ∈ S̄T , the closed-loop system (6.18) with control law (6.45) is
MSS if and only if there exists a solution P̄ for the Riccati equation (6.46).

Proof. The proof is presented in Appendix 6.F.

Corollary 6.3.6. If the pair
(
A,Q

1
2

)
is detectable, it follows directly by Definition 6.1.1 and

Theorem 6.3.5 that stochastic stabilizability is necessary and sufficient for the existence of a solution
to the modified Riccati equation (6.46).
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6.4 Implementation

In this section, we present algorithms that utilize the infinite horizon approaches from Section 6.3.
First, we present a MPC method that utilizes the above infinite horizon approaches to select a
suitable final state weighting for the online algorithm presented in Algorithm 5.1. This is followed
by an online implementation of the discounted cost in Section 6.3.1. Finally, a number of offline
co-design implementations are presented. These will make it easier to select round robin (RR)
scheduling sequences, than the heuristic which was used in the simulations in Section 5.4. The
proposed offline approaches will result in the optimal offline performance for the given period T .
Further, two of the offline approaches provide MSS co-design solutions.

6.4.1 MPC with final state weighting

Based on the discussions in Sections 6.1 and 6.3, we combine the results from Sections 6.2 and 6.3.
More specifically, we present a method that utilizes the solutions to the infinite horizon cost
approximations in Section 6.3 as a final state weighting in the finite horizon cost function (6.21)
in Section 6.2.

As commonly done in MPC, the final state weighting W in (6.21) is tuned to represent the
control cost as the horizon N →∞. Ideally, one would like to compute the cost (6.21) as the period
T → ∞. This means, that there is no periodic assumption on the schedule. However, as stated
in Section 5.3.4, the scheduling part of the co-design algorithm amounts to a non-deterministic
polynomial-time (NP)-hard problem. It is therefore impossible to compute (6.21) as T →∞.

To address this issue, we instead assume that for a limited amount of time, say k + K − 1,
K ≥ 1, the optimal scheduling sequence can be any possible admissible sequence. Then, from
time k + K and on, the scheduling sequence converges to a periodic schedule with a fixed period
T . The cost from time k + K and on can then be represented by one of the infinite horizon
approximations (6.42) or (6.31), that are presented in Section 6.3. We implement this by using
the periodic approximations (6.31) and (6.42) to design the final state weighting W in (6.21).

Remark 6.4.1. An alternative idea is to assume that the scheduling sequence always is periodic.
Implementations based on this are presented in Sections 6.4.2 and 6.4.3.

We first explain how the solutions to the LTI Riccati equations (6.37) and (6.46) are utilized
to select the final state weighting for the finite horizon cost function. This is non-trivial, since the
LTI Riccati equations each represent a periodic solution to a periodic Riccati equation. This is
followed by the design of the online part of the MPC algorithm. Section 6.4.1.2 presents a method
to select which periodic schedule S̄ to used for the Riccati equation that is used for the final state
weighting. We present three cost functions that can be used to select S̄. Section 6.4.1.3 presents a
stability result for the MPC algorithm and Section 6.4.1.4 shows a derivation of the steady-state
discounted cost (6.38), which is used to select the final state weighting in Section 6.4.1.2.

6.4.1.1 MPC with final state weighting

In this section, we utilize a solution to Riccati equation (6.37) or (6.46) for a periodic schedule
S̄ ∈ S̄Ta to design the final state weighting W in the cost function (6.21). This part of the design
is done offline.
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It is however worth noting, that the final state weighting W ∈ Rm×m in (6.21), while the
solutions to the Riccati equations (6.37) and (6.46) are in RmT×mT . The reason for this is, as
explained in Section 6.2.2, that the solutions to (6.37) and (6.46) are in fact augmented matrices
that contain the periodic solutions to a periodic Riccati equation on the block-diagonal. Recall
from Section 6.2.2, that by computing the Riccati equation P̄ for S̄, all possible cyclic shifts of the
periodic scheduling sequence S can be computed simultaneously. Thus, for a periodic schedule S̄
with period T ,

P̄ = diag
{[
P0 P1 · · · PT−1

]}
.

The question that arises is, which Pi, i ∈ {0, · · · , T − 1} to choose as the final state weighting W?
In MPC, the parameter W in (6.21) is tuned to represent the behaviour or cost of the system at

time k+K, where K ≥ 1. As discussed in Section 6.1, we assume that after k+K time-steps, the
optimal scheduling sequence S?∞ converges to a periodic scheduling sequence with a fixed period
T . This has to be taken into account in the cost function (6.21). One obvious method to do this,
is by making the final state weighting W periodic. This means that for example, at time k, we
select Wk%T , at time k+ 1 we select Wk+1%T etc. In this case, the cost (6.21) would at each time
k be stated as

J̄Wi

(
x (k) , Z̄, ŪK

) k ∈ N
i = k % T.

(6.49)

However, at the initial state k = 0, we do not know whether i = k % T or i = (k + `) % T ,
where ` ∈ {1, · · · , T − 1}. Also, recall from the discussion above and in Section 6.3, that we fix
the period T , since it is infeasible to find the actual optimal period that the scheduling sequence
might converge to. This means, that the optimal periodic schedule S̄ ∈ S̄Ta for a fixed T , might
not be optimal among all possible period lengths. Therefore, to potentially increase the control
performance, we, instead of cycling through Wi, i ∈ {0, · · · , T − 1}, choose to create a set W that
is defined as

W , {P`|` = 0, · · · , T − 1} . (6.50)

Then, at every time-step, we find the final state weighting W ∈W that minimizes (6.49) i.e.

J̄W?

(
x̄ (k) , Z̄, ŪK

)
, min
W∈W

J̄W
(
x̄ (k) , Z̄, ŪK

)
. (6.51)

It is worth noting, that the worst case cost of (6.51) would be when W ? = Wi. In this case (6.51)
is equal the cyclic final state weighting cost (6.49). This thus means that

J̄W?

(
x̄ (k) , Z̄, ŪK

)
≤ J̄Wi

(
x̄ (k) , Z̄, ŪK

) k ∈ N
i = k % T.

The disadvantage of the cost (6.51) compared to (6.49) is, that (6.51) requires more online com-
putations.

In the online part of the MPC algorithm we want to, at every time-step k find a feasible finite
length scheduling sequence ZK with length K, that minimizes the cost (5.23) over all W ∈W. It
is worth noting, that the scheduling sequence ZK can be expressed by the LTI schedule Z̄ ∈ S̄Ka
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Algorithm 6.1 MPC for the co-design with final state weighting. This algorithm is modified from
Algorithm 5.1.

Input: state x (k)
Compute: Z̄? ∈ S̄Ka and W ? ∈W using (6.52)
Compute: ū (k) = −L̄?0

(
Z̄?
)
x̄ (k)

Obtain: time-varying control input using the mappings from Table 6.1 and schedule Z? (0)
from the LTI schedule Z̄?
Output: schedule Z? (0) and control u (k)
Discard: the remaining controls

(
L̄?1, · · · , L̄?K−1

)
and schedules Z?1,K−1

using the formulations in Section 6.1.3. Then, the optimal cost is given by

J̄?W? (x̄ (k)) , min
Z̄∈S̄K

a ,ŪK

J̄W?

(
x̄ (k) , Z̄, ŪK

)

= min
Z̄∈S̄K

a ,ŪK ,W∈W
J̄W

(
x̄ (k) , Z̄, ŪK

)
,

where J̄W
(
x̄ (k) , Z̄, ŪK

)
is the cost function (6.21). The optimal scheduling sequence and optimal

controls are then defined as
(
Z̄?, Ū?K

)
, arg min
Z̄∈S̄K

a ,ŪK

min
W∈W

J̄W
(
x̄ (0) , Z̄, ŪK

)
.

Recall from Theorem 6.2.1, that the optimal controls can be found analytically for an optimal
schedule Z̄? and final state weighting W ?. Thus, in the MPC algorithm, we find

(
Z̄?,W ?

)
= arg min
Z̄∈S̄K

a ,W∈W
J̄W

(
x̄ (0) , Z̄, Ū?K

(
Z̄
))
. (6.52)

The implementation of the MPC algorithm that is based on (6.52) requires some modifications
to Algorithm 5.1. This results in Algorithm 6.1.

6.4.1.2 Selecting the final state weighting

Now, we present a method to find the solution P̄ to the Riccati equation (6.37) or (6.46) which is
used to design the set of final state weightingsW that is used in (6.52). Recall from Theorems 6.3.2
and 6.3.4, that there exists a solution P̄ to the Riccati equation (6.37) or (6.46) for every stochas-
tically stabilizable schedule2, that is, the schedules that satisfy the condition in Definition 6.1.1.
The question is thus, which schedule to use?

Inspired by ideas from the work [40], we select P̄ from the schedule that minimizes the cost

min
T∈{1,··· ,T̄},S̄∈S̄T

a

[
F̄y
(
S̄
)

+ βT card
(
S̄Ka
)]
, (6.53)

where y ∈ {a,d0,dx} indicates the choice of infinite horizon approach that is used and K is the
horizon length for the online MPC cost (6.52). T̄ ≥ 1 is used to set the maximum period to
optimize over. The parameter β ≥ 0 is used to trade-off the computational cost and the control
performance. The computational cost amounts to the number of schedules Z̄ ∈ S̄Ka and final state

2Except for the discounted Riccati equation (6.37) with α < 1, since in this case a solution can exist, even if
the schedule is not stochastically stabilizable.
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weightings W ∈W that have to be compared in (6.52). It is worth noting, that in (6.52), card (W)
final state weightings have to be compared for every admissible schedule Z̄ ∈ S̄Ka . Recall from
Section 5.3.4, that the amount of admissible schedules is given by

card
(
S̄Ka
)

=
[(

n

NCFP

)(
n−NCFP

NCAP

)]K
.

Thus, in the online part (6.52) of the MPC Algorithm 6.1, T card
(
S̄Ka
)

combinations have to be
tested at every time-step k. Tuning β in (6.53) allows one to trade-off the amount of combinations
that have to be tested in (6.52) and the value of the cost function F̄y

(
S̄
)
.

The set W of final state weightings (6.50) is then comprised of the block-diagonal elements of
the solution to the Riccati equation

P̄ ? , P̄
(
S̄?
)
,

where P̄ is given by (6.46) if y = a and (6.37) if y ∈ d0,dx and

S̄? , min
T∈{1,··· ,T̄}

arg min
S̄T∈S̄T

a

[
F̄y
(
S̄
)

+ βT card (ΞK)
]
.

We then denote the optimal final state weightings by

Wy ∈Wy y ∈ {a,d0,dx}

to indicate which infinite horizon approximation was used in the design.
Next, we present three possible choices for the infinite horizon cost approximation F̄y

(
S̄
)
.

Definition 6.4.1. The infinite horizon cost approximation F̄y
(
S̄
)
, y ∈ {a,d0,dx}, that is used in

(6.53) can be chosen as one of the following:

• Averaged (a). When the final state weighting is based on the averaged cost from Theo-
rem 6.3.4, we can directly use (6.47), i.e.

F̄a
(
S̄
)
, J̄a

(
S̄, Ū?∞

(
S̄
))
. (6.54)

• Discounted noise (d0). The discounted optimal cost for a known schedule (6.41) depends
on the state x̄ (k). However, the state x̄ (k) is not available offline. We therefore assume that
as the system converges to steady-state, the system state x̄ will converge to zero, and the cost
will be noise-driven. We therefore set the state x̄ (k) = 0, for all k. This results in the cost

F̄d0
(
S̄
)
, J̄d

(
0, S̄, Ū?∞

(
S̄?T
))
,

where J̄d
(
x̄ (0) , S̄, Ū?∞

(
S̄?T
))

is defined in (6.38). This is the approach that we used in the
paper [85].

• Discounted steady-state (dx). Realistically however, the state x̄ (k) will, due to the noise
ω̄ (k), not equal 0. A more sophisticated method is to utilize the statistics of the state x̄ (k)
as k →∞ to compute average steady-state cost. This is done using

F̄dx
(
S̄
)
, min
`∈{0,··· ,T−1}

Fdx
(
`, S̄, Ū?∞

(
S̄
))
, (6.55)
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where Fdx is a cost function that is based on the discounted cost function (6.38). This cost
is derived in Section 6.4.1.3 and is given by

Fdx
(
`, S̄, Ū?∞

(
S̄
))

= trace
(
ē`Σx̄

(
S̄
)
ē`P̄

(
S̄
))

+
T−1∑

t=0

αt+1

1− αT trace
(
Σ̄ω̄ (`+ t) F̄T P̄

(
S̄
)
F̄
)
.

6.4.1.3 A stability result

Next, we have a result on stability for the MPC algorithm with the final state weighting obtained
through (6.54).

Theorem 6.4.1. Consider a system of the form (6.1a) with bounded noise covariance Σω, and
a periodic scheduling sequence S̄ ∈ S̄T , for which there exists a solution to the Riccati equation
(6.46). Then, the system (6.1a) using the MPC scheme in Algorithm 6.1 with the final state
weighting computed using (6.54) is MSS.

Proof. The proof follows a stochastic Lyapunov argument, and is presented in Appendix 6.G.

Remark 6.4.2. To reduce the computational requirements in Algorithm 6.1, one can limit the
optimal schedule to be found among a subset ΞK ⊂ S̄Ka in the online part of the MPC cost (6.52).
In this case, the results from Theorem 6.4.1 hold true and Algorithm 6.1 is MSS if the subset ΞK

contains all cyclic shifts of the periodic scheduling sequence that minimizes the infinite horizon cost
(6.54).

6.4.1.4 Computing the steady-state discounted cost Fdx

In this section, we present a method to compute the steady-state discounted cost Fdx that is
described in (6.55). Recall, that the optimal discounted cost function (6.32) depends on the state
x̄ (k) at each time k. Therefore, to find the optimal schedule, the optimization problem (6.39) has
to be solved at each time-step. However, to utilize the optimal discounted cost function (6.38) to
find a periodic schedule that is optimal over the long run, that is, as x→∞, we need to compute
the steady-state cost. In this section, we obtain the steady state cost, that then is used in (6.55)
to find the optimal periodic schedule to select the final state weighting.

For a schedule S̄ ∈ S̄T , define the expected value of the optimal discounted cost (6.38) at time
k as

Gdx
(
k, S̄, Ū?∞

(
S̄
))
, E

{
J̄d
(
x̄ (k) , S̄, Ū?∞

(
S̄
))

; S̄
}
, (6.56)

and define, for each ` ∈ {0, · · · , T − 1}, where T is the period, the cost (6.56) as k →∞ by

Fdx
(
`, S̄, Ū?∞

(
S̄
))
, lim
k→∞

Gdx
(
k + `, S̄, Ū?∞

(
S̄
))
. (6.57)

We thus, for a schedule S̄ ∈ S̄T , take the expected value of the optimal discounted cost (6.38) over
the state x̄ (k) as k →∞. Define the covariance of the state

Σx̄
(
k, S̄

)
, E

{
x̄ (k) x̄T (k) ; S̄

}
(6.58)

where Σx̄
(
0, S̄

)
is known. Then, we have the following result.
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Lemma 6.4.2. For a known schedule S̄ ∈ S̄T , the cost (6.56) is at any time k = 0, 1, 2, · · · given
by

Gdx
(
k, S̄, Ū?∞

(
S̄
))

= trace
(
ēk%TΣx̄

(
k, S̄

)
ēk%T P̄

(
S̄
))

+
T∑

t=1

αt

1− αT trace
(
Σ̄ω̄ (k + t− 1) F̄T P̄

(
S̄
)
F̄
)
, (6.59)

where ēi is defined in (6.20) and Σx̄
(
k, S̄

)
is for a schedule S̄ is given by the recursion

Σx̄
(
k + 1, S̄

)
= E

{
H̄L̄?

d(S̄) (γ̄) Σx̄
(
k, S̄

)
H̄T
L̄?

d(S̄) (γ̄) ; S̄
}

+ F̄ Σ̄ω̄F̄T , (6.60)

with

Σx̄
(
0, S̄

)
= E

{
x̄ (0) x̄T (0) ; S̄

}

and H̄L̄?
d(S̄) (γ̄) is defined in (6.19).

Proof. The proof is presented in Appendix 6.H.

The optimal solution to the steady-state cost function (6.57) is then given by:

Theorem 6.4.3. Consider a known schedule S̄ ∈ S̄T with period T for which a solution to the
discounted Riccati equation (6.37) exists. Then, for each ` = 0, · · · , T − 1, a solution to the cost

Fdx
(
`, S̄, Ū?∞

)
= lim
k→∞

Gdx
(
Tk + `, S̄, Ū?∞

(
S̄
))

exists if and only if there exists a solution to

Σx̄
(
S̄
)

= E
{
H̄L̄?

d(S̄) (γ̄) Σx̄
(
S̄
)
H̄T
L̄?

d(S̄) (γ̄) ; S̄
}

+ F̄ Σ̄ω̄F̄T . (6.61)

This results in the cost

Fdx
(
`, S̄, Ū?∞

)
= trace

(
ē`Σx̄

(
S̄
)
ē`P̄

(
S̄
))

+
T−1∑

t=0

αt+1

1− αT trace
(
Σ̄ω̄ (`+ t) F̄T P̄

(
S̄
)
F̄
)
. (6.62)

Proof. The proof is found in Appendix 6.I.

The cost (6.62) in Theorem 6.4.3 is used on the right-hand-side of (6.55). From Lemma 6.4.2
and Theorem 6.4.3 the following result regarding MSS follows directly:

Corollary 6.4.4. By Theorem 6.4.3 it follows that, for a schedule S̄ ∈ S̄T , the closed-loop system

x̄ (k) = H̄L̄?
d(S̄)x̄ (k) + F̄ ω̄ (k) ,

is MSS if and only if there exists a positive definite solution to (6.61).

Remark 6.4.3. It is worth noting, that since (6.61) follows by the definition in (6.58), stochastic
stabilizability, as defined in Section 6.1.4 is a necessary and sufficient condition for a schedule S̄
in Theorem 6.4.3.
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6.4.2 Discounted MPC

This algorithm is based on the MPC algorithm that is presented in Algorithm 5.1. However, it
instead uses the periodic schedules and control laws for the discounted cost. These are given by
(6.39) and (6.40). The optimal schedule and controls are computed at every time-step k. The
discounted MPC approach is presented in Algorithm 6.2.

Algorithm 6.2 Discounted MPC

1. At time-step k, compute S̄? using (6.39).

2. Compute the optimal control laws Ū?∞
(
S̄?
)

using Theorem 6.3.2.

3. Apply schedule S̄ (k) = S̄? and control ū (k) = −L̄d
(
S̄?
)
.

6.4.3 Offline implementation

In the simulation studies in Section 5.4, we compared the optimal MPC co-design to heuristic
offline schedules. However, it is not always a trivial task to find an offline schedule that results in
good performance and a stable NCS. In this section, we present three methods on how to find the
optimal offline co-design. The offline schedules for a period length T are found by

S̄ = arg min
S̄∈S̄T

a

min
T∈{1,··· ,T̄}

F̄y
(
S̄
)

y ∈ {a,d0,dx} , (6.63)

where {a,d0,dx} are defined in Definition 6.4.1 and T̄ ≥ 1 is the maximum period to optimize
over. This results in three implementations that can be implemented using the offline algorithm
presented in Algorithm 6.3.

Of the offline implementations in Algorithm 6.3, selecting the averaged cost a and steady-state
discounted cost dx provides a MSS co-design solution. This follows by Theorem 6.3.5 and Corol-
lary 6.4.4, respectively. On the other hand, using the discounted cost that assumes zero state (d0)
does not guarantee stability.

6.5 Simulation studies

In this section, we compare the performance of the proposed scheduler and controller co-design
algorithms. We first investigate the impact of the choice of the trade-off parameter β in the cost

Algorithm 6.3 Offline (y).

• The optimal schedule S̄? is found by (6.63) with y selected from the set {a,d0,dx}.

• The optimal feedback gains are then given by L̄y
(
S̄?
)
.

• At every time-step k, apply schedule S?(k % T ) from the periodic scheduling sequence S?
that is obtained from S̄ (k) = S̄? and control input u (k) obtained from the periodic control
input ū (k) = −L̄y

(
S̄?
)
x̄ (k) using the mappings from Table 6.1.
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(6.53) for the choice of final state weighting for the online MPC algorithm that is presented in
Algorithm 6.1. Afterwards, the MPC algorithm with different choices of final state weighting is
compared to the discounted MPC that is presented in Algorithm 6.2 and the offline algorithm
presented in Algorithm 6.3. We present results for three different systems.

6.5.1 The impact of the choice of β on the final state weighting

In this section, we study the weighting parameter β in (6.53). Figures 6.1a and 6.1e show the cost
and number of schedules to compare in the MPC algorithm that is presented in Algorithm 5.1.
The simulation uses system (5.39), where 3 actuators share one slot in the CFP and one slot in
the CAP. The parameters are as set in Section 5.4.3. We only consider a horizon length N = 1,
since the goal is to achieve good control performance while maintaining a low number of scheduling
sequences.

In Figure 6.1, small values for β mean a low penalty for the number of schedules compared
to the cost. It shows, that for system (5.39), there is little to no performance improvement in
the empirical cost for low β compared to high β. However, when the system is affected by an
unmeasured disturbance of the form (5.42), the performance decreases slightly 0.3 dB for W̄a and
0.06 dB for W̄dx when β increases. These results are shown in Figure 6.1b.

As Figures 6.1a and 6.1b show, any choice of final state weighting from Section 6.4.1 outperforms
Q by a significant margin of 2 dB to 3 dB when the horizon N = 1. However, in this case the
computational cost is higher. Increasing the weighting factor β results in fewer schedules to
compare. It is noteworthy, that for this system, the empirical cost does not increase when β

is increased, even when the number of schedules are reduced. When the system is affected by
the unmeasured disturbance (5.42), shown in Figure 6.1b, the control performance increases in
some cases when β is increased. This means, that fewer scheduling sequences result in improved
performance. However, the margin is very small (less than 0.2 dB). Another interesting observation
is, that when the system is affected by the unmeasured disturbance, the final state weighting that
is obtained by either of the discounted costs F̄d0 and F̄dx in Definition 6.4.1 outperforms the final
state weighting that is obtained using F̄a. In contrary, the final state weighting that is obtained
using F̄a results in the best performance when the system is only affected by Gaussian noise, as
shown in Figure 6.1a.

Figures 6.1c and 6.1d illustrate the performance when a hold-input strategy is used. In this
setting, any choice of final state weighting based on an infinite horizon cost outperforms Q by a
margin of 7 dB to 8 dB when N = 1. However, the final state weightings that utilize the averaged
cost provide a notably lower cost than the discounted costs. The number of schedules is shown in
Figure 6.1f. As with the set-to-zero case, reducing the number of schedules by increasing β does
not result in any notable performance loss.

6.5.2 Comparison of the online and offline implementations

In this section, we investigate the performance and number of scheduling sequences for all algo-
rithms presented in Sections 5.3.3 and 6.4. This includes the MPC Algorithm 5.1 with final state
weighting W = Q, and the modified MPC Algorithm 6.1 with final state weightings a, d0 and
dx, the offline Algorithm 6.3 for the cost approximations a, d0 and dx and the discounted ap-
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(a) Gaussian disturbance, set-to-zero.
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(b) Unmeasured disturbance, set-to-zero.
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(c) Gaussian disturbance, hold-input.
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(d) Unmeasured disturbance, hold-input.
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(e) Number of schedules, set-to-zero.
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(f) Number of schedules, hold-input.

Figure 6.1: A sweep of β for system (5.39) using Algorithm 6.1. Figures 6.1a and 6.1e show the
performance and number of schedules with a set-to-zero strategy at the actuators. Figures 6.1c
and 6.1f show the performance and number of schedules for a hold-input strategy at the actuators.
The system is affected by a Gaussian disturbance. Figures 6.1b and 6.1d show the cost when the
system is affected by the unmeasured disturbance (5.42).

proach Algorithm 6.2. We investigate three different systems, with different amounts of actuators
and channel capacities. All results are obtained by performing 500 simulations, each of length
20 000 time steps. The empirical cost is computed using (5.41). The final state weightings for
Algorithm 5.1 as well as the scheduling sequences for the offline algorithms are selected by (6.53)
with β = 0. That is, the number of scheduling sequences is not penalized. We set α = 0.9 for
the discounted Riccati equation (6.37). In the MPC Algorithm 6.2, when the final state weighting
is given by Wy, the horizon length N = 1. Similarly, the offline algorithm is implemented using
Algorithm 6.3.
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(a) Gaussian disturbance, set-to-zero.
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(b) Unmeasured disturbance, set-to-zero.
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(c) Gaussian disturbance, hold-input.
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(d) Unmeasured disturbance, hold-input.
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(e) Number of schedules, set-to-zero.
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(f) Number of schedules, hold-input.

Figure 6.2: Co-design performance for system (5.39). Figures 6.2a and 6.2b utilize a set-to-
zero strategy at the actuators, while Figures 6.2c and 6.2d utilize a hold-input strategy that
is implemented as described in (2.4). The unmeasured disturbance is generated using (5.42).
Figures 6.2e and 6.2f show the number of schedules to compare at each time-step.

6.5.2.1 Small system from Section 5.4.3

For this simulation, we consider the system (5.39) from Section 5.4.3. The results are shown in
Figure 6.2. Figures 6.2a and 6.2b show the performance for the system with set-to-zero at the
actuators. Here Figure 6.2a shows the cost when Gaussian white noise is present while Figure 6.2b
shows the cost when the sysstem is affected by the random disturbance (5.42). The results show,
that when there is only Gaussian noise, all online algorithms besides MPC with final state weighting
Q and N = 1, show performance gains of 2 dB to 3 dB over the offline implementations. Inter-
estingly, when the unmeasured disturbance is present, the performance of the offline algorithms
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6. A periodic approach to scheduling and control co-design

is also in the range of 3 dB to 4 dB lower than the best online implementations. For this system
the discounted MPC (Algorithm 6.2) performs on par with the MPC with final state weighting
(Algorithms 5.1 and 6.1). Here, the period length does not affect the performance significantly.
Figure 6.2e shows the number of scheduling sequences that have to be compared in the MPC
algorithms. It shows, that the computational complexity of the discounted MPC with T = 2 is on
par with the MPC algorithms that use Wy as final state weighting.

However, when the input is held at the actuators, which is shown in Figures 6.2c and 6.2d,
the performance of the online algorithms increases by 8 dB to 10 dB over the offline algorithms.
Also, selecting y = a in both the MPC Algorithm 6.1 and the offline Algorithm 6.3 results in
significantly improved performance compared to selecting y ∈ {d0,dx}. On the other hand, the
discounted MPC (Algorithm 6.2) results in reduced performance compared to the MPC Algo-
rithms 5.1 and 6.1 besides the case where N = 1 and the weighting Q is used. Interestingly, as
Figure 6.2f shows, the discounted MPC Algorithm 6.2 requires fewer scheduling sequences than
the other MPC algorithms. This is caused by ill-conditioned matrices that affect the solution to
the discounted Riccati equation (6.37). Due to this, there exists solutions to the discounted Riccati
equation (6.37) for fewer scheduling sequences than when set-to-zero is used.

6.5.2.2 Larger system from Section 5.4.4

In this section, we show the results of Monte-Carlo simulations for system (5.43) and (5.44) in
Section 6.5.2.2. This system consists of three subsystems, of which one system has two actuators
and the others each have one. The controller has access to one slot in the CFP and one in the
CAP. This means that at each time-step, two out of four actuators are addressed.

Figures 6.3a and 6.3b show the performance of the algorithms with Gaussian noise and with an
unmeasured disturbance, respectively when set-to-zero is used at the actuators. For this system,
the discounted MPC results in a cost which is approximately 1 dB higher than the best MPC
algorithms. Compared to the studies in Section 6.5.2.1, using Q as final state weighting with
horizon length N = 1 results in improved performance over the offline algorithms. Also, the online
algorithms results in a cost that is 3 dB to 6 dB lower than the offline algorithms. Figure 6.3e
shows the number of scheduling sequences to compare in the online part of the algorithms. Here
the MPC in Algorithm 5.1 with N = 1 and W = Q searches among the least amount of scheduling
sequences while resulting in similar performance as the discounted MPC in Algorithm 6.2 with
T = 2. However, the MPC Algorithm 6.1 with final state weighting, results in the best performance
while maintaining the number of schedules to compare at each time-step below 100. Among the
choices of final state weighting, y = d0 yielded the best performance while also requiring the lowest
number of scheduling sequences, as shown in Figure 6.3e.

Numerical issues prevented solutions to the discounted Riccati equation (6.37) when a hold-
input strategy is used at the actuators. Due to this, no results were obtained for Algorithm 6.2
and Algorithms 6.1 and 6.3 when y ∈ {d0,dx}. The obtained results are shown in Figures 6.3c
and 6.3d. In both simulations, the MPC Algorithm 5.1 with final state weighting W = Q and
horizon length N = 1 resulted in a cost larger than 500 dB and are truncated for easier viewing.
Also here, the online algorithms outperform the offline algorithm by a margin of 6 dB to 8 dB.
Considering the number of scheduling sequences needed in the online algorithms, which is shown
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(a) Gaussian disturbance, set-to-zero.
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(b) Unmeasured disturbance, set-to-zero.
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(c) Gaussian disturbance, hold-input.
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(d) Unmeasured disturbance, hold-input.
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(e) Number of schedules, set-to-zero.
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Figure 6.3: Co-design performance for system (5.43) and (5.44) affected by a Gaussian disturbance
(Figures 6.3a and 6.3c) and the unmeasured disturbance (5.42) (Figures 6.3b and 6.3d) for both
set-to-zero and hold-input actuator policies. In Figures 6.3c and 6.3d, the MPC algorithm with
N = 1 and Q as final state weighting resulted in a cost of over 500 dB and is truncated for easier
viewing. Figures 6.3e and 6.3f show the number of schedules that have to be compared at every
time-step.

in Figure 6.3f, Algorithm 6.1 with y = a results in the best performance while requiring the least
amount of scheduling sequences.

6.5.2.3 Large scale NCS

In this section we simulate a large scale system with six actuators that share one slot in the CFP
and two slots in the CAP. The model is given by

A = diag {A1, A2, A3, A4, A5} , B = diag {B1, B2, B3, B4, B5} (6.64)
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6. A periodic approach to scheduling and control co-design

and

C = diag {C1, C2, C3, C4, C5} .

The subsystems Ai, Bi are given by

A1 =




0 1 0
−0.333 0 0.667

1.22 0 −1.22


 , B1 =




0
0.333

0


 , A2 =

[
−0.72 0.72
0.889 −2.4

]
, B2 =

[
5.09 0

0 6.29

]
,

A3 =
[

0.54 0.841
−0.841 0.54

]
, B3 =

[
0.46
0.841

]
, A4 =

[
1.1 0
1 1.1

]
, B4 =

[
1

0.5

]
,

A5 =




0.681 0.319 0.888 0.112
0.319 0.681 0.112 0.888
−0.559 0.559 0.681 0.319
0.559 −0.559 0.319 0.681




and B5 =




0.471
0.0286
0.888
0.112



.

In (6.64) the output matrices are given by Ci = I for i = 2, · · · , 5 and

C1 =
[
0 0 1

]
.

The matrix F = I is of appropriate dimensions. We set Q = CTC and R = I.
This system results in a large number of scheduling sequences as shown in Figures 6.3e and 6.3f.

When N = 1, the MPC algorithm with final state weighting Q has to compare 60 scheduling
sequences at each time-step. When N = 2, this number increases to 3600 and for N = 3 this
would be 21 600 scheduling sequences. This makes it prohibitive to perform the optimal co-design
for long horizon lengths, and thereby obtaining a low cost with the MPC algorithm with final
state weighting Q. However, as the results in Figures 6.3a and 6.3b show, significant performance
gains (19 dB) can be obtained by using a suitable selection of the final state weighting. This also
holds true when a hold-input strategy is used, which is illustrated in Figures 6.3c and 6.3d. The
offline implementations result in a cost of 3 dB more than the best performing online cost. Also,
it depends on the scenario which choice of final state weighting from Section 6.4.1 results in the
best performance. In Figure 6.3b, when the unmeasured disturbance (5.42) is present, the choice
of final state weighting Wdx, results in a 2 dB lower cost than Wa,.

However, when a hold-input strategy is used, numerical stability prevents computation of the
final state weighting Wdx,. Also, the MPC algorithm with final state weighting Q was unable
to maintain stability. The performance of the remaining algorithms is shown in Figures 6.4c
and 6.4d. In this setting, the MPC algorithms reduce the cost by 5 dB compared to the optimal
offline implementations. The discounted MPC algorithm results in a higher cost than the best
choice of offline algorithm. Since this number includes cyclic shifts of the scheduling sequences,
there were merely 21 unique scheduling sequences that the discounted algorithm could utilize. The
main reason for this is also the numerical instability that affects the inversion of the large matrices
when iteratively solving the discounted Riccati equation (6.37).
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(a) Gaussian disturbance, set-to-zero.
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(b) Unmeasured disturbance, set-to-zero.
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(c) Gaussian disturbance, hold-input.
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(d) Unmeasured disturbance, hold-input.
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(e) Number of schedules, set-to-zero.
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Figure 6.4: Co-design performance for system (6.64) affected by Gaussian noise (Figures 6.4a
and 6.4c) and the unmeasured disturbance (5.42) (Figures 6.4b and 6.4d) with both set-to-zero
and hold-input actuator strategies. Figures 6.4e and 6.4f show the number of schedules that have
to be compared at every time-step.

6.5.2.4 Summary of the simulation results

We have illustrated that a carefully selected final state weighting for the MPC Algorithm 5.1, which
is implemented in the modified MPC Algorithm 6.1, indeed results in significant performance
gains for a relatively low computational cost. Further, it is using these carefully selected final
state weightings, possible to obtain good performance on large scale systems, that else could be
prohibitive to design and implement an optimal co-design for.

It however largely depends on the system, actuator strategy and disturbances which choice
of infinite horizon approximation in Section 6.4.1 results in the best performance. However, the
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performance deviation between the different approximations tends to be within 1.5 dB.
The offline co-designs that were obtained in Section 6.4.3 using the infinite horizon approxima-

tions resulted in solid performance. In some cases these outperformed MPC algorithms with short
horizons and poorly selected final state weightings. Further, compared to the heuristic approach
that we utilized in Section 5.4, the proposed design in Algorithm 6.3 makes it possible to find an
optimal offline scheduling sequence. Among the offline implementations, the implementation that
uses Wa, that is obtained by the averaged cost function (6.48) results in the best performance.

6.6 Summary

In this chapter, we presented a periodic formulation of the scheduling problem presented in Chap-
ter 5. Using this formulation, the schedules could be treated as time-invariant. After revising the
finite horizon solution from Section 5.3 in the time-invariant framework, we presented two methods
to approximate an infinite horizon cost function. These approximations utilized the assumption,
that a scheduling sequence would be repeated periodically with a fixed period length. These infinite
horizon approximations were utilized to select the final state weighting for the online MPC schedul-
ing algorithm, which for short horizon lengths resulted in significant performance gains compared
to an arbitrarily selected final state weighting. This meant, that the online computational cost
can be reduced significantly compared to the MPC implementation presented in Section 5.4 while
providing similar performance. Further, these infinite horizon approximations were utilized to ob-
tain offline scheduling sequences that can outperform the heuristic offline scheduling approach in
Section 5.4 by a significant margin.

We have shown stability for two of the three offline scheduling algorithms. Further we have
shown stability for the MPC algorithm when the final state weighting is selected to be the solution
to the Riccati equation that is obtained from the averaged infinite horizon cost approximation.

Appendix

6.A Proof of Theorem 6.2.1

For a known schedule S̄ ∈ S̄T , the optimal control law for the cost function (6.21) with horizon
length NT is given by

Ū?NT , arg min
ŪNT

J̄W
(
x̄ (0) , S̄, ŪNT

)
.

The optimal cost for the schedule S̄ is given by

J̄W
(
x̄ (0) , S̄, Ū?NT

)
= min
ŪNT

J̄W
(
x̄ (0) , S̄, ŪNT

)

= min
ŪNT

E
{
‖x̄ (NT )‖2W̄ +

NT−1∑

`=0
‖x̄ (`)‖2Q̄ + ‖ū (`)‖2R̄(γ̄(`))

∣∣∣∣∣x̄ (0) ; S̄
}
.

This can for n = 1, 2, · · · , NT be stated as

J̄W
(
x̄ (0) , S̄, Ū?NT

)
= min

Ū0,n

E
{
n−1∑

`=0
‖x̄ (`)‖2Q̄ + ‖ū (`)‖2R̄(γ̄(`)) + J̄W

(
x̄ (n) , S̄, Ū?n,NT

)
∣∣∣∣∣x̄ (0) ; S̄

}
.

122



6.6. Summary

Thus, the above can be formulated stage-wise for k = 0, 1, · · · , NT − 1 as

J̄W
(
x̄ (k) , S̄, Ū?k,NT

)
=

min
ū(k)

E
{
‖x̄ (k)‖2Q̄ + ‖ū (k)‖2R̄(γ̄(k)) + J̄W

(
x̄ (k + 1) , S̄, Ū?k+1,NT

)∣∣∣x̄ (k) ; S̄
}
, (6.A.1)

where

J̄W
(
x̄ (NT ) , S̄N

)
= E

{
‖x̄ (NT )‖2W̄

∣∣∣x̄ (NT ) ; S̄
}

= x̄T (NT ) W̄ x̄ (NT ) .

The proof now follow by dynamic programming [15]. If at time k+1 the optimal cost for a schedule
S̄ has the form

J̄W
(
x̄ (k + 1) , S̄, Ū?k+1,NT

)
= x̄T (k + 1) P̄k+1x̄ (k + 1) + ck+1,

then, at time k, writing out (6.A.1) leads to

J̄W
(
x̄ (k) , S̄, Ū?k,NT

)
= min

ū(k)
E
{
x̄T (k) Q̄x̄ (k) + ūT (k) R̄ (γ̄ (k)) ū (k)

x̄T (k + 1) P̄k+1x̄ (k + 1) + ck+1

∣∣∣x̄ (k) ; S̄
}
.

Substituting the recursion (6.11) yields

J̄W
(
x̄ (k) , S̄, Ū?k,NT

)
= min

ū(k)
E
{
x̄T (k) Q̄x̄ (k) + ūT (k) R̄ (γ̄ (k)) ū (k)

(
Āx̄ (k) + B̄ (γ̄ (k)) ū (k) + F̄ ω̄ (k)

)T
P̄k+1

(
Āx̄ (k) + B̄ (γ̄ (k)) ū (k) + F̄ ω̄ (k)

)
+ ck+1

∣∣∣x̄ (k) ; S̄
}

= min
ū(k)

E
{
x̄T (k)

(
Q̄+ ĀT P̄k+1Ā

)
x̄ (k) + ūT (k)

[
R̄ (γ̄ (k)) + B̄T (γ̄ (k)) P̄k+1B̄ (γ̄ (k))

]
ū (k)

+ 2ūT (k) B̄T (γ̄ (k)) P̄k+1Āx̄ (k) + ω̄T (k) F̄T P̄k+1F̄ ω̄k + ck+1

∣∣∣x̄ (k) ; S̄
}
.

Distributing the expectation yields

J̄W
(
x̄ (k) , S̄, Ū?k,NT

)
= min

ū(k)
x̄T (k)

(
Q̄+ ĀT P̄k+1Ā

)
x̄ (k)

+ ūT (k)
[
E
{
R̄ (γ̄ (k)) ; S̄

}
+ E

{
B̄T (γ̄ (k)) P̄k+1B̄ (γ̄ (k)) ; S̄

} ]
ū (k)

+ 2ūT (k) E
{
B̄T (γ̄ (k)) ; S̄

}
P̄k+1Āx̄ (k) + trace

(
Σ̄ω̄ (k) F̄T P̄k+1F̄

)
+ ck+1

with Σ̄ω̄ (k) defined in (6.12). Computing the expectations as in the proof in Appendix 5.B and
substitution in the above yields

J̄W
(
x̄ (k) , S̄, Ū?k,NT

)
= x̄T (k)

(
Q̄+ ĀT P̄k+1Ā

)
x̄ (k) + trace

(
Σ̄ω̄ (k) F̄T P̄k+1F̄

)
+ ck+1

+ min
ū(k)

ūT (k)
[
R̄
(
S̄
)

+M
(
P̄k+1, S̄

) ]
ū (k) + 2ūT (k) B̄T

(
S̄
)
P̄k+1Āx̄ (k) .

The proof now proceeds from (5.B.4) in Appendix 5.B.
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6.B Proof of Lemma 6.3.1

For a schedule S̄ ∈ S̄T the minimized cost (6.31) can for n = 1, 2, · · · , NT − 1 be stated as

J̄d
(
x̄ (0) , S̄, Ū?NT

)
=

min
Ū0,n

E
{
n−1∑

`=0
α`
[
‖x̄ (`)‖2Q̄ + ‖ū (`)‖2R̄(γ̄(`))

]
+ αnJ̄d

(
x̄ (n) , S̄, Ū?n,NT

)
∣∣∣∣∣x̄ (0) ; S̄

}
.

This yields the cost at each stage

J̄d
(
x̄ (k) , S̄, Ū?k,NT

)
=

min
ū(k)

E
{
‖x̄ (`)‖2Q̄ + ‖ū (`)‖2R̄(γ̄(`)) + αJ̄d

(
x̄ (k + 1) , S̄, Ū?k+1,NT

)∣∣∣x̄ (k) ; S̄
}
.

The result then follows directly by proceeding as in Appendix 6.A.

6.C Proof of Theorem 6.3.2

The proof follows standard arguments for infinite horizon optimal stochastic control [15], [49].
Since limk→∞ P̄−k , P̄ exists, it follows using the arguments in the proof of Lemma 3.3.2, that P̄
is the solution to the discounted Riccati equation (6.37). Now computing

lim
N→∞

J̄d
(
x̄ (0) , S̄, Ū?NT

)
= lim
N→∞

x̄T (0) P̄0x̄ (0) + lim
N→∞

NT∑

`=1
α` trace

(
Σ̄ω̄ (`) F̄ P̄`F̄T

)
,

where,

lim
N→∞

x̄T (0) P̄0x̄ (0) = x̄T (0) P̄ x̄ (0) (6.C.1)

The term

lim
N→∞

NT∑

`=1
α` trace

(
Σ̄ω̄ (`) F̄ P̄`F̄T

)
= lim
N→∞

N−1∑

k=0
αkT

T∑

`=1
α` trace

(
Σ̄ω̄ (`− 1) F̄ P̄`F̄T

)

define

c ,
T∑

`=1
α` trace

(
Σ̄ω̄ (`− 1) F̄ P̄`F̄T

)
(6.C.2)

the above leads to the geometric sum which, if |a| < 1 has the solution

lim
N→∞

N−1∑

k=0
αkT c = 1

1− αT c. (6.C.3)

Combining (6.C.1) to (6.C.3) then leads to the cost (6.38), where P̄ is the solution to (6.37).

6.D Proof of Lemma 6.3.3

For a schedule S̄ ∈ S̄T , the averaged cost (6.42) can for n = 1, 2, · · · , NT − 1 be stated as

J̄a
(
x̄ (0) , S̄, Ū?NT

)
=

1
NT

min
Ū0,n

E
{
n−1∑

`=0
‖x̄ (`)‖2Q̄ + ‖ū (`)‖2R̄(γ̄(`)) + (NT − n) J̄a

(
x̄ (n) , S̄, Ū?n,NT

)
∣∣∣∣∣x̄ (0) ; S̄

}
.
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At each stage k = 0, 1, · · · , NT − 1 this yields

J̄a
(
x̄ (k) , S̄, Ū?k,NT

)
= 1
NT − k min

ū(k)
E
{
‖x̄ (`)‖2Q̄ + ‖ū (`)‖2R̄(γ̄(`)) +

(NT − k − 1) J̄a
(
x̄ (k + 1) , S̄, Ū?k+1,NT

) ∣∣x̄ (k) ; S̄
}
,

where

J̄a
(
x̄ (NT ) , S̄

)
= E

{
‖x̄ (NT )‖2Q̄

∣∣∣x̄ (NT ) ; S̄
}
.

The result is then obtained by proceeding as in Appendix 6.A.

6.E Proof of Theorem 6.3.4

Since P̄ = limN→∞ P̄N exists for the schedule S̄ ∈ S̄T , the cost (6.44) using (6.43) becomes

J̄a
(
x̄ (0) , S̄, Ū∞

)
=

lim
N→∞

1
NT

x̄T (0) P̄NT x̄ (0) + lim
N→∞

1
NT

NT−1∑

`=0
trace

(
Σ̄ω̄ (`) F̄T P̄`+1F̄

)
. (6.E.1)

Since P̄ is finite, the first term on the right-hand-side of the above vanishes. For the second term,
define the linear map

ξ (n) , 1
T

T−1∑

`=0
trace

(
Σ̄ω̄ (`) F̄T P̄nT+`+1F̄

)
, (6.E.2)

such that

ξ (N) = 1
T

T−1∑

`=0
trace

(
Σ̄ω̄ (`) F̄T P̄NT+`+1F̄

)
.

It is easy to verify by (3.26) and (3.27) and Lemma 3.C.1 that P̄N in (6.26) is monotone. Since
also P̄ = limN→∞ P̄N exists, we have on the limit that

lim
n→∞

ξ (n) = lim
n→∞

1
T

T−1∑

`=0
trace

(
Σ̄ω̄ (`) F̄T P̄nT+`+1F̄

)

= 1
T

T−1∑

`=0
trace

(
Σ̄ω̄ (`) F̄T P̄ F̄

)

= 1
T

trace
(
Σ̄ω̄F̄T P̄ F̄

)

, ξ̄,

where Σ̄ω̄ is defined in (6.13).
Going back to (6.E.1), substituting (6.E.2) yields

J̄a
(
x̄ (0) , S̄, Ū∞

)
= lim
N→∞

1
N

N−1∑

n=0

1
T

T−1∑

`=0
trace

(
Σ̄ω̄ (`) F̄T P̄nT+`+1F̄

)

= lim
N→∞

1
N

N−1∑

n=0
ξ (n) .
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Since P̄N is monotone and (6.E.2) is a linear map, ξ (N) is also monotone. Therefore

lim
N→∞

1
N

N−1∑

n=0
ξ (n) = lim

N→∞
1
N

N−1∑

n=0
ξ̄ = ξ̄

and the result follows.

6.F Proof of Theorem 6.3.5

Before showing the proof of Theorem 6.3.5, we introduce the following definition and lemma:
For a schedule S̄ ∈ S̄T , define the matrix

AL̄?
k
, E

{
H̄L̄?

k
(γ̄)⊗ H̄L̄?

k
(γ̄) ; S̄

}
. (6.F.1)

Then, we have the following result.

Lemma 6.F.1. For a schedule S̄ ∈ S̄T , the Riccati equation (6.26) can be stated as

vec
(
P̄k
)

= AT
L̄?

k(S̄) vec
(
P̄k+1

)
+ vec

(
Q̄+

(
L̄?k
(
S̄
))T

R̄
(
S̄
)
L̄?k
(
S̄
))
.

Proof. The proof follows the same procedure as the proof of Lemma 3.3.2 in Appendix 3.C, i.e.

P̄k = Q̄+ ĀT P̄k+1Ā− ĀT P̄k+1B̄
(
S̄
) [
R̄
(
S̄
)

+M
(
P̄k+1, S̄

)]†
B̄
(
S̄
)T
P̄k+1Ā

Using (6.24) and multiplying and dividing by
[
R̄
(
S̄
)

+M
(
P̄k+1, S̄

)]
yields

P̄k = Q̄+ ĀT P̄k+1Ā−
(
L̄?k
(
S̄
))T [

R̄
(
S̄
)

+M
(
P̄k+1, S̄

)]
L̄?k
(
S̄
)
. (6.F.2)

Using (3.C.5) and (3.C.6) in Appendix 3.C, yields

ĀT P̄k+1Ā = E
{(
Ā− B̄ (γ̄) L̄?k

(
S̄
))T

P̄k+1
(
Ā− B̄ (γ̄) L̄?k

(
S̄
))

; S̄
}

+
(
L̄?k
(
S̄
))T

M
(
P̄k+1, S̄

)
L̄?k
(
S̄
)

+ 2
(
L̄?k
(
S̄
))T

R̄
(
S̄
)
L̄?k
(
S̄
)
. (6.F.3)

Combining (6.F.2) and (6.F.3) then results in

P̄k = E
{(
Ā− B̄ (γ̄) L̄?k

(
S̄
))T

P̄k+1
(
Ā− B̄ (γ̄) L̄?k

(
S̄
))

; S̄
}

+ Q̄+
(
L̄?k
(
S̄
))T

R̄
(
S̄
)
L̄?k
(
S̄
)

= E
{
H̄T
L̄?

k(S̄) (γ̄) P̄k+1H̄L̄?
k(S̄) (γ̄) ; S̄

}
+ Q̄+

(
L̄?k
(
S̄
))T

R̄
(
S̄
)
L̄?k
(
S̄
)
.

This can be vectorized as

vec
(
P̄k
)

= E
{
H̄T
L̄?

k(S̄) ⊗ H̄
T
L̄?

k(S̄) ; S̄
}

vec
(
P̄k+1

)
+ vec

(
Q̄+

(
L̄?k
(
S̄
))T

R̄
(
S̄
)
L̄?k
(
S̄
))
.

Then, the result follows by using (6.F.1).

We now present the proof of Theorem 6.3.5.

Proof of Theorem 6.3.5. Define the state covariance for a schedule S̄ ∈ S̄T by

XS̄ (k) , E
{
x̄ (k) x̄T (k) ; S̄

}
,
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where XS̄ (0) , E
{
x̄ (0) x̄T (0) ; S̄

}
is known and the state evolution is given by (6.18).

Evaluating this expectation yields

XS̄ (k + 1) = E
{(

H̄L̄a(S̄) (γ̄) x̄ (k) + F̄ ω̄ (k)
)(

H̄L̄a(S̄) (γ̄) x̄ (k) + F̄ ω̄ (k)
)T

; S̄
}

= E
{
H̄L̄a(S̄) (γ̄) x̄ (k) x̄T (k) H̄T

L̄a(S̄) (γ̄) + F̄ ω̄ (k) ω̄T (k) F̄T ; S̄
}

= E
{
H̄L̄a(S̄) (γ̄) E

{
x̄ (k) x̄T

∣∣S̄
}

(k) H̄T
L̄a(S̄) (γ̄) ; S̄

}
+ E

{
F̄ ω̄ (k) ω̄T (k) F̄T ; S̄

}

= E
{
H̄L̄a(S̄) (γ̄)XS̄ (k) H̄T

L̄a(S̄) (γ̄)
∣∣∣S̄
}

+ F̄ Σ̄ω̄ (k) F̄T ,

where we used the fact that ω̄ (k) is independent and identically distributed (i.i.d). Using properties
of the Kronecker product, the above can be vectorized as

vec (XS̄ (k + 1)) = AL̄a(S̄) vec (XS̄ (k)) + vec
(
F̄ Σ̄ω̄ (k) F̄T

)
, (6.F.4)

where AL̄a(S̄) is defined in (6.F.1). A solution to the linear equation (6.F.4) exists if and only if
all eigenvalues of AL̄a(S̄) are within the unit circle.

Now, easy to see that Pk+1 in Lemma 6.F.1 is linear in Pk. Then, by Lemma 3.C.1 in Ap-
pendix 3.C, it follows directly, that

lim
k→∞

Pk = P̄,

where

vec
(
P̄
)

= AT
L̄a(S̄) vec

(
P̄
)

+ vec
(
Q̄+ L̄Ta

(
S̄
)
R̄
(
S̄
)
L̄a
(
S̄
))
. (6.F.5)

Now since AL̄a(S̄) is identical in (6.F.4) and (6.F.5)

lim
k→∞

‖vec (XS̄ (k))‖ <∞

if and only if there exists a solution to (6.46), and thereby also (6.F.5) exists, which proofs the
theorem.

6.G Proof of Theorem 6.4.1

For this proof, consider the system (6.1a) without the additive disturbance ω (k). The reason for
this is, that when the state x (k) becomes sufficiently large, the contribution of the noise ω (k) is
insignificant. Thus, stochastic stability results for the system (6.1a) without the disturbance ω (k)
using the MPC in Algorithm 6.1 extends to systems that are affected by disturbance ω (k) with
bounded covariance. The control laws for the MPC algorithm are given by feedback laws of the
form u (k) = −L? (S (k))x (k). This results in the system

x (k + 1) = Ax (k)−B (γ (k))L? (S (k))x (k)

= HL(S(k)) (γ (k))x (k) . (6.G.1)

The control law L? (S (k)) is the optimal control law for schedule S (k), that is obtained in Theo-
rem 6.2.1. In the below, the argument for HL(S(k)) is omitted for easier notation.
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Define, for any horizon length N ∈ N the value function

V (x (k) ,Sk,k+N−1, i) , E
{N−1∑

`=0
‖x(k + `)‖2Q + ‖L (S (k + `))x (k + `)‖2R{γ(k+`)}

+ ‖x (k +N)‖2Pi+N

∣∣∣x (k) ; Sk,k+N−1

}
, (6.G.2)

where Pi+N , P ((i+N) % T ) is the (i+N) % T ’th shift of the solution to the periodic Riccati
equation (6.46) for a schedule S̄? and Sk,k+N−1 is a length N scheduling sequence. Thus, by
Theorem 6.3.5, the schedule S̄? is MSS. In (6.G.2) the positive semi-definite matrices Q and
R (γ (k)) are set to the same values as are used to compute P̄ as in Theorem 6.3.4. It is further
worth noting the similarity between the value function (6.G.2) and the MPC cost functions (5.23)
and (6.21).

Let

S�k,N−1 , arg min
S∈Ξ

V (x(k),S, i)

i?k,S?k,N−1 , arg min
i,S∈Ξ

V (x(k),S, i) , (6.G.3)

where Ξ is the set of all possible length N scheduling sequences. Define the minimum value function

V ? (x(k)) , V
(
x(k),S?k,k+N−1, i

?
k

)
.

With some abuse of notation, we denote the schedule Si to be the i’th schedule in the periodic
scheduling sequence S̄. The sequence S̄ is the scheduling sequence that is obtained from the
schedule S̄ ∈ S̄T that is used to compute the Riccati equation P̄ in (6.46). Denote Pi to be the i’th
block of the block diagonal matrix P̄ . This block corresponds to the periodic scheduling sequence
S̄i,∞ where Si is the first schedule. It is then, using (6.G.1), easy to verify that

E
{
‖x(k)‖2Pi

∣∣∣x (k)
}

= E
{
‖x(k)‖2Q + ‖L? (Si (k))x (k)‖2R{γ(k)} + ‖x (k + 1)‖2Pi+1

∣∣∣x (k)
}
, (6.G.4)

where i = k%T . In this proof i is the cyclic indexing the periodic scheduling sequence S. Therefore,
we adopt the convention that if i + 1 = T , we set i = 0. See Section 6.1.2 for the notation of
periodic scheduling sequences.

We want to show that V ? (x (k)) is a Lyapunov function. i.e.

V ? (x (k)) ≥ 0 ∀x (k) (6.G.5a)

V ? (x (k)) = 0⇒ x (k) = 0 (6.G.5b)

|x| ≥ |y| ⇒ V ? (x) ≥ V ? (y) (6.G.5c)

V (x (k)) ≥ V (x (k + 1)) ∀k. (6.G.5d)

It is easy to verify that for all Sk,k+N−1 and i,

V (x (k) ,Sk,k+N−1, i) ≥ 0 (6.G.6)

and

V (x (k) ,Sk,k+N−1, i) = 0 (6.G.7)
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requires x (k) = 0. Further, it follows directly from (6.G.2) that when |x| ≥ |y|

V (x,Sk,k+N−1, i) ≥ V (y,Sk,k+N−1, i) , (6.G.8)

for all Sk,k+N−1 and i. Thus, V (x (k) ,Sk,k+N−1, i) is monotone in x (k). Since (6.G.6) to (6.G.8)
hold true for all Sk,k+N−1 and i, this must also hold for S?k,k+N−1 and i?k. This proofs (6.G.5a) to
(6.G.5c).

However, since (6.G.1) and (6.G.2) are stochastic due to the variable γ (k), condition (6.G.5d)
is difficult to show. Instead, we consider the stochastic Lyapunov candidate E {V ? (x (k))} and
verify that it is decreasing for all k, i.e.

E {V ? (x (k))} ≥ E {V ? (x (k + 1))} . (6.G.9)

Refer to [52] for more details regarding stochastic Lyapunov functions.
First, we show that for the scheduling sequence S̄i+1,i+N that consists of the first N schedules

of the periodic scheduling sequence that is used to compute the Riccati equation Pi, it holds true
for all i ∈ {0, · · · , T − 1} that

E
{
V
(
x (k) , S̄i,i+N−1, i

)}
≥ E

{
V
(
x (k + 1) , S̄i+1,i+N , i+ 1

)}
. (6.G.10)

For this, we have that

E
{
V
(
x (k + 1) , S̄i+1,i+N , i+ 1

)}
= E

{
E
{N−1∑

`=0
‖x(k + `+ 1)‖2Q

+ ‖L (S (i+ `+ 1))x (k + `+ 1)‖2R{γ(k+`+1)} + ‖x (k +N + 1)‖2Pi+N+1

∣∣∣x (k + 1) ; S̄i+1,i+N

}}

= E
{N−1∑

`=0
‖x(k + `)‖2Q + ‖L (S (i+ `))x (k + `)‖2R{γ(k+`)}

+ ‖x(k +N)‖2Q + ‖L (S (i+N))x (k +N)‖2R{γ(k+N)} + ‖x (k +N + 1)‖2Pi+N+1

−
[
‖x(k)‖2Q + ‖L (S (i))x (k)‖2R{γ(k)}

]}
.

Then, using (6.G.4), we have can rewrite the above to

E
{
V
(
x (k + 1) , S̄i+1,i+N , i+ 1

)}
=

= E
{N−1∑

`=0
‖x(k + `)‖2Q + ‖L (S (i+ `))x (k + `)‖2R{γ(k+`)} + ‖x (k +N)‖2Pi+N

−
[
‖x(k)‖2Q + ‖L (S (i))x (k)‖2R{γ(k)}

]}

= E
{
V
(
x (k) , S̄i,i+N−1, i

)
−
[
‖x(k)‖2Q + ‖L (S (i))x (k)‖2R{γ(k)}

]

︸ ︷︷ ︸
≥0

}

≤ E
{
V
(
x (k) , S̄i,i+N−1, i

)}
.

It follows directly that this holds for all i ∈ {0, · · · , T − 1}. Thus, (6.G.10) holds true.
Next, we show that

E
{
V
(
x (k) , S̄i,i+N−1, i

)}
≥ E

{
V
(
x (k) ,S�k,k+N−1, i

)}
≥ E {V ? (x (k))} . (6.G.11)
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For the first inequality, we have that

E
{
V
(
x (k) ,S�k,k+N−1, i

)}
= E

{
min

Sk,k+N−1∈Ξ
V (x (k) ,Sk,k+N−1, i)

}

≤ E
{
V
(
x (k) , S̄i,i+N−1, i

)}
, (6.G.12)

since, in worst case, S�k,k+N−1 = S̄ii,i+N−1. To show the second inequality in (6.G.11), we have
that

E {V ? (x (k))} = E
{
V
(
x (k) ,S?k,k+N−1, i

?
)}

= E
{

min
Sk,k+N−1∈Ξ,i

V (x (k) ,Sk,k+N−1, i)
}

≤ E
{

min
Sk,k+N−1∈Ξ

V (x (k) ,Sk,k+N−1, i)
}

(6.G.13)

= E
{
V
(
x (k) ,S�k,k+N−1, i

)}
.

Equation (6.G.11) then follows by combining (6.G.12) and (6.G.13).
Lastly, we show that

E {V ? (x (k))} ≥ E
{
V
(
x (k + 1) ,

(
S?k+1,k+N−1, S (i?k +N)

)
, i?k
)}
. (6.G.14)

In (6.G.14) we have that the sequence

S?k,k+N−1 =
(
S? (k) ,S?k+1,k+N−1

)

where S?k,k+N−1 is obtained using (6.G.3). Also, the schedule S (i?k +N) is the schedule that fits
with the i?k +N ’th offset in the period i?k. Now,

E
{
V
(
x (k + 1) ,

(
S?k+1,k+N−1, S (i?k +N)

)
, i?k
)}

= E
{

E
{N−2∑

`=0
‖x(k + `+ 1)‖2Q + ‖L (S? (k + `+ 1))x (k + `+ 1)‖2R{γ(k+`+1)}

+ ‖x(k +N)‖2Q + ‖L (S (i?k +N))x (k +N)‖2R{γ(k+N)}

+ ‖x (k +N + 1)‖2Pi?
k

+N+1

∣∣∣x (k + 1) ;
(
S?k+1,k+N−1, S (i?k +N)

)}}

(a)= E
{N−2∑

`=0
‖x(k + `+ 1)‖2Q + ‖L (S? (k + `+ 1))x (k + `+ 1)‖2R{γ(k+`+1)}

+ ‖x (k +N)‖2Pi?
k

+N

}

= E
{N−1∑

`=0
‖x(k + `)‖2Q + ‖L (S? (k + `))x (k + `)‖2R{γ(k+`)}

+ ‖x (k +N)‖2Pi?
k

+N

−
[
‖x(k)‖2Q + ‖L (S? (k))x (k)‖2R{γ(k)}

]}

= E
{
V ? (x (k))−

[
‖x(k)‖2Q + ‖L (S? (k))x (k)‖2R{γ(k)}

]}

≤ E {V ? (x (k))} (6.G.15)
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where we used (6.G.4) in (a). This shows that (6.G.14) holds true.
It then follows directly by (6.G.11) that

E
{
V
(
x (k + 1) ,S�k+1,k+N , i

?
k

)}
= E

{
min

Sk+1,k+N

V (x (k + 1) ,Sk+1,k+N , i
?
k)
}

≤ E
{
V
(
x (k + 1) ,

(
S?k+1,k+N−1, S (i?k +N)

)
, i?k
)}
.

(6.G.16)

Then, (6.G.9) follows directly by combining (6.G.11), (6.G.15) and (6.G.16). Thus, V ? (x) is a
stochastic Lyapunov function and the MPC scheme in Algorithm 6.1 using final state weighting
(6.54) is MSS [52].

In this proof we also obtained the result, that the MPC algorithm for system (6.G.1) without
the disturbance ω (k), resulted in similar or better performance than periodic scheduling. However,
note that the optimal cost in the MPC in Algorithm 6.1 depends on the statistics of the disturbance
ω (k). Thus, when the system (6.G.1) is affected by noise, the cost improvement does not necessarily
hold true for small values of x (k).

6.H Proof of Lemma 6.4.2

For a schedule S̄ ∈ S̄T , the cost (6.55) is at time k given by

Gdx
(
k, S̄, Ū?∞

(
S̄
))

= E
{
J̄?d
(
x̄ (k) , S̄, Ū?∞

)
; S̄
}

=

= E
{
x̄ (k)T P̄ x̄ (k) +

T∑

t=1

αt

1− αT trace
(
Σ̄ω̄ (k + t− 1) F̄T P̄ F̄

)
; S̄
}

= E
{

trace
(
x̄ (k) x̄ (k)T P̄

)
; S̄
}

+
T∑

t=1

αt

1− αT trace
(
Σ̄ω̄ (k + t− 1) F̄T P̄ F̄

)

= trace
(
E
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x̄ (k) x̄ (k)T ; S̄
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P̄
)

+
T∑

t=1

αt

1− αT trace
(
Σ̄ω̄ (k + t− 1) F̄T P̄ F̄

)

= trace
(
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)
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+
T∑

t=1

αt

1− αT trace
(
Σ̄ω̄ (k + t− 1) F̄T P̄ F̄

)
.

where Σx̄
(
k, S̄

)
is defined in (6.58). Now computing Σx̄

(
k, S̄

)
with k + 1 for cleaner notation

yields

Σx̄
(
k + 1, S̄

)
= E

{[(
Ā− B̄ (γ̄ (k)) L̄d

)
x̄ (k) + F̄ ω̄ (k)

] [(
Ā− B̄ (γ̄ (k)) L̄d

)
x̄ (k) + F̄ ω̄ (k)

]T ; S̄
}

= E
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H̄L̄?

d(S̄) (γ̄ (k)) x̄ (k) + F̄ ω̄ (k)
] [
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d(S̄) (γ̄ (k)) x̄ (k) + F̄ ω̄ (k)
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; S̄
}

= E
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H̄L̄?

d(S̄) (γ̄ (k)) x̄ (k) x̄T (k) H̄T
L̄?

d(S̄) (γ̄ (k)) + F̄ ω̄ (k) ω̄T (k) F̄T ; S̄
}
, (6.H.1)

where the closed-loop response H̄L̄?
d(S̄) (γ̄ (k)) is defined in (6.19) and L̄?d

(
S̄
)

is given by (6.36).
The above can be restated to

Σx̄
(
k + 1, S̄

)
= E

{
H̄L̄?

d(S̄) (γ̄ (k)) E
{
x̄ (k) x̄T (k) ; S̄

}
H̄T
L̄?

d(S̄) (γ̄ (k)) ; S̄
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H̄T
L̄?

d(S̄) (γ̄ (k)) ; S̄
}

+ F̄ Σ̄ω̄ (k) F̄T .
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Using ēi, as defined in (6.20) and Σ̄ω̄ as defined in (6.13), allows us to rewrite the above to

Σx̄
(
k + 1, S̄

)
= E

{
H̄L̄?

d(S̄) (γ̄ (k)) Σx̄
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Substituting this in the cost (6.H.1) yields

Gdx
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ēk

[
E
{
H̄L̄?

d(S̄) (γ̄ (k)) Σx̄
(
k − 1, S̄

)
H̄T
L̄?

d(S̄) (γ̄ (k)) ; S̄
}

+ F̄ Σ̄ω̄F̄T
]
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which leads to (6.59) and (6.60).

6.I Proof of Theorem 6.4.3

Note that the limit
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ēk%TΣx̄

(
k, S̄

)
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does not exist, due to the periodic switching in ēk%T . However, assume that for a known schedule
S̄ ∈ S̄T the limit limk→∞Σx̄
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)
exists, where Σx̄

(
k, S̄
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is given by (6.60). Now, for ` =
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ē` lim
k→∞

[
Σx̄
(
kT + `, S̄

)]
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(6.I.1)

It is easy to verify that (6.60) is monotonic. Stating (6.60) on vectorized form yields
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(
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,

where

A
(
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Now, since limk→∞ Σx̄
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)
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(
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(
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exists. As shown in [49, Lemma 2.2],

this is equivalent to the existence of a solution to the equation
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,
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which leads to (6.61).
This means, that in (6.I.1)

lim
k→∞

Σx̄
(
kT + `, S̄

)
= lim
k→∞

Σx̄
(
k, S̄

)
= Σx̄

(
S̄
)
,

holds true for any ` and T , where Σx̄
(
S̄
)

is the solution to (6.61). Substituting this into (6.I.1)
for ` = 1, · · · , T − 1 yields

lim
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trace
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ē`Σx̄

(
S̄
)
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1− αT trace
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,

which leads to (6.62).
The sufficient condition follows directly, since if limk→∞Σx̄

(
k, S̄

)
≮∞ then

lim
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for all ` = 1, · · · , T − 1.
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Chapter 7

Conclusions and future directions

We summarize and conclude the results presented in this thesis and present a number of interesting
and relevant future directions.

7.1 Conclusions

Initially, we presented a number of challenges related to the design of networked control systems
(NCSs) that communicate over wireless networks. This work addresses mainly two of these chal-
lenges: packet loss and network bandwidth constraints. We have presented solutions that provide
robustness and improved performance for NCSs under these conditions. By the use of tools such as
optimal linear-quadratic control, dynamic programming, stochastic control and optimization, we
presented frameworks for the analysis and synthesis of the control and scheduling for NCSs which
are interconnected with wireless networks affected by packet loss and bandwidth constraints.

In this thesis, we presented a method for optimal controller and offline estimator design that is
robust against packet losses that can be modelled using an independent and identically distributed
(i.i.d) model. While i.i.d packet loss models are convenient in the analysis and synthesis of the
controller, packet loss on wireless networks tends to be correlated. However, in many network
models that consider correlated packet loss, the network state can not be observed by the con-
troller. If, on the other hand, network models are used where the network state depends on a finite
history of recent packet arrivals, the network state can be observed by the controller. We pre-
sented an optimal controller design that takes these correlated network models into account. This
method greatly improves performance over controllers that feature i.i.d network models. Lastly,
we considered networks that are affected by i.i.d packet loss and are bandwidth limited. These
networks are based on the IEEE 802.15.4 protocol. To accommodate this, we presented multiple
methods for the co-design of an optimal scheduler and controller that can address multiple ac-
tuators over bandwidth limited networks that are affected by packet loss. This, however, is an
non-deterministic polynomial-time (NP)-hard problem, as discussed in e.g. [93]. To reduce this
computational complexity, we presented a method that utilizes infinite horizon cost function ap-
proximations to allow for short horizons in an online model predictive control (MPC) algorithm.
This provides significantly improved performance over offline scheduling.

Next, we present the conclusions for the results that we obtained in each chapter.
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• Chapter 3 In this chapter, we presented a method for the analysis and synthesis of the
optimal controller and offline estimator for NCSs that are connected with wireless networks
featuring i.i.d packet dropouts. The controller and estimator are offline and optimal in the
sense of minimizing a cost function which is solely based on system and network statistics.
We pointed out that these designs are dual, which permits the estimator design for a given
system to be performed by formulating a dual system, and then design a controller for the
latter. We have thereby extended the classical duality that exists between a linear quadratic
regulator (LQR) and a Kalman filter to the case of systems that are affected by i.i.d packet
loss.

• Chapter 4 In this chapter, we extended the controller design method from Chapter 3 to
consider correlated network models. These correlated network models can capture memory
effects on the network which cannot be captured by i.i.d models. We utilized a network
model where the network state depends on a finite history of packet arrival outcomes. This
allows the controller to observe the network state. The optimal controller design that was
presented, resulted in feedback policies that take into account the packet arrival history by
selecting representative gains from a lookup table. Simulation studies illustrate significant
performance gains over standard LQR designs as well as designs that merely consider i.i.d
network models. The implementation of this controller is however complex, since the number
of control gains increases exponentially with the length of the relevant history. In an attempt
to reduce the computational complexity, we presented three sub-optimal methods that trade-
off controller complexity and control performance. Two out of these three methods provide
improved performance at similar complexity levels as the controllers that are developed for
an i.i.d network model.

• Chapter 5 In this chapter, we presented a novel co-design method that creates both opti-
mal schedules and control inputs for distributed NCSs that are connected through wireless
networks. These networks utilize a IEEE 802.15.4 protocol that features both a more reli-
able contention free period (CFP) and a less reliable contention access period (CAP). While
transmission in the CFP is preferred, the limit of the amount of transmission slots in the
CFP motivates the use of the less reliable CAP. We presented a novel co-design method that
takes both transmission periods into account to design an optimal schedule and feedback con-
trol policies. Simulation studies illustrated significant performance gains compared to offline
round robin (RR) heuristics with fixed scheduling. Further, these simulation studies showed,
that longer prediction horizon lengths yielded improved control performance. However, these
longer prediction horizons lead to a significantly increased computational complexity. This
is prohibitive for implementations of the presented co-scheduling algorithm on large scale
NCSs.

• Chapter 6 This chapter extends the controller and scheduler co-design that was introduced
in Chapter 5. We presented a framework that allows reformulation of the time-varying
stochastic systems that appear when finite length scheduling sequences are utilized. This
framework allowed the time-varying systems to be restated as linear time-invariant (LTI)
stochastic systems. This simplified the synthesis and analysis significantly. After revising
the results from Chapter 5 using the LTI framework, we presented methods to approximate
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infinite horizon cost functions by the use of fixed length periodic scheduling sequences with
a fixed period. We utilized these results to design the final state weighting in the online
MPC algorithm and to design offline schedules. Simulation studies showed, that for shorter
horizons, the MPC algorithm with a proper choice of final state weighting outperforms MPC
with an arbitrarily selected final state weighting. The online MPC algorithm yield signifi-
cant performance gains for short prediction horizons compared to arbitrarily selected final
state weightings. This allowed for greater performance at lower a computational complexity
than the method that is presented in Chapter 5. Further, we showed that the online MPC
algorithm provides mean square stability (MSS) when the final state weighting is selected to
be the periodic solution to a periodic Riccati equation that minimized a long-run averaged
cost.

The offline schedules that were designed using the solutions to the infinite horizon cost
approximations, resulted in significantly improved performance compared to the reference
heuristic scheduling used in Chapter 5. Further, two of the methods that we presented
provide MSS.

7.2 Future work

In this thesis, we addressed a number of problems that arise when implementing wireless networks
in NCSs. Many of the solutions that we presented lead to new questions and open problems that
will have to be addressed in the future. This section describes a number of these future directions.

7.2.1 Correlated packet dropouts

In Chapters 3 and 4, we have illustrated that the controller designs that we presented can yield sig-
nificant performance gains when more accurate correlated network models are taken into account.
Further, even when constraints on the number of controllers are implemented, the proposed meth-
ods outperform i.i.d network models. While simulation studies show performance gains, analytical
performance guarantees and bounds have so far not been provided. Future work could include an
explicit characterization that can quantify the trade-off between the number of controllers and the
closed-loop performance for different lengths of packet loss history.

Another topic that has not been addressed is closed-loop stability. However, by reformulating
the closed-loop system to fit into the Markov jump linear system (MJLS) framework, the results
from works such as [23], can be readily applied.

7.2.2 Scheduler and controller co-design

In Chapters 5 and 6, we presented optimal co-design algorithms to jointly design an optimal sched-
ule and controller. We presented methods that reduce the number of scheduling sequences that
have to be compared in an online algorithm while providing good control performance. However,
the computational requirements for larger systems are still significant. This becomes prohibitive
for implementations on systems that have limited computational power available. One obvious
method to reduce the computational complexity of the online part, is to reduce the number of
scheduling sequences that are compared in the online MPC algorithm. Reducing the number of
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scheduling sequences will inevitably deteriorate the performance by some degree. However, clever
selection of the scheduling sequences that are contained in the subset might merely compromise
the control performance by a small margin while reducing the computational requirements signif-
icantly.

In the above, we considered the online computational part in the MPC algorithm. However,
for very large-scale systems, the offline computations for solving the involved Riccati equations
can also become prohibitive. To find the optimal scheduling sequence, all solutions to the Riccati
equations need to be compared. This is a combinatorial problem and therefore, optimality can only
be guaranteed after comparing all possible scheduling sequences. While this to some extent can
be performed on large computing grids, the exponential growth of the complexity of the problem
can make this infeasible for particularly large systems. Approaches that avoid this computational
complexity while guaranteeing some degree of optimality would be a significant contribution. Al-
ternatively, an interesting approach could be to use a form of probabilistic scheduling for the cost
function that is used to select the final state weighting in the MPC algorithms.

We have presented results that guarantee closed-loop stability for some of the optimal co-design
algorithms, both online and offline. However, the applicability of the remaining methods will be
limited until stability results have been obtained for these. Further, an analytical analysis of the
cost improvement for the MPC algorithm compared to offline schedules will be useful. This can,
among others, be utilized to compare the trade-off between the increased computational complexity
against the performance gains without performing extensive simulations.
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[27] D. Dolz, D. E. Quevedo, I. Peñarrocha, and R. Sanchis, “Performance vs complexity trade-
offs for Markovian networked jump estimators,” in Proceedings of the 19th IFAC world
congress, 2014, Cape Town: International Federation of Automatic Control (IFAC), 2014.

[28] N. Elia, “Remote stabilization over fading channels,” Systems & control letters, vol. 54,
no. 3, pp. 237 –249, 2005.

[29] C. Fischione, P. Park, S. Ergen, K. H. Johansson, and A. Sangiovanni-Vincentelli, “Ana-
lytical modeling and optimization of duty-cycles in preamble-based IEEE 802.15.4 wireless
sensor networks,” IEEE/ACM transactions on networking, 2009, QS 20120315.

[30] H. C. Foundation. (2017). HART application guide. Retrieved 20-06-2017, Fieldcomm.

[31] M. D. Fragoso, “Discrete-time jump LQG problem,” International journal of systems sci-
ence, vol. 20, no. 12, pp. 2539–2545, 1989.

[32] M. E.M. B. Gaid, A. Cela, and Y. Hamam, “Optimal integrated control and scheduling of
networked control systems with communication constraints: Application to a car suspension
system,” IEEE transactions on control systems technology, vol. 14, no. 4, pp. 776–787, 2006.

[33] E. N. Gilbert, “Capacity of a burst-noise channel,” Bell system technical journal, vol. 39,
no. 5, pp. 1253–1265, 1960.

[34] R. D. Gomes, D. V. Queiroz, A. C. L. Filho, I. E. Fonseca, and M. S. Alencar, “Real-time
link quality estimation for industrial wireless sensor networks using dedicated nodes,” Ad
hoc networks, vol. 59, pp. 116 –133, 2017.

[35] G. Goodwin, H. Haimovich, D. Quevedo, and J. Welsh, “A moving horizon approach to
networked control system design,” Automatic control, IEEE transactions on, vol. 49, no. 9,
pp. 1427–1445, 2004.

[36] G. C. Goodwin, D. E. Quevedo, and E. I. Silva, “Architectures and coder design for net-
worked control systems,” Automatica, vol. 44, no. 1, pp. 248 –257, 2008.
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[75] S. Öncü, N. van de Wouw, W. P.M. H. Heemels, and H. Nijmeijer, “String stability of inter-
connected vehicles under communication constraints,” in 2012 IEEE 51st IEEE conference
on decision and control (CDC), 2012, pp. 2459–2464.

[76] R. Oung and R. D’Andrea, “The distributed flight array,” Mechatronics, vol. 21, no. 6,
pp. 908 –917, 2011.

[77] P. Park, C. Fischione, and K. H. Johansson, “Performance analysis of GTS allocation in
beacon enabled IEEE 802.15.4,” in Sensor, mesh and ad hoc communications and networks,
2009. SECON '09. 6th annual IEEE communications society conference on, 2009, pp. 1–9.

[78] ——, “Modeling and stability analysis of hybrid multiple access in the IEEE 802.15.4 pro-
tocol,” ACM transactions on sensor networks (TOSN), vol. 9, no. 2, 13:1–13:55, 2013.

[79] T. Park, T. Kim, J. Choi, S. Choi, and W. Kwon, “Throughput and energy consumption
analysis of IEEE 802.15.4 slotted CSMA/CA,” Electronics letters, vol. 41, no. 18, pp. 1017–
1019, 2005.

[80] E. G. W. Peters, D. E. Quevedo, and J. Østergaard, “Shaped Gaussian dictionaries for
quantized networked control systems with correlated dropouts,” IEEE transactions on sig-
nal processing, vol. 64, no. 1, pp. 203–213, 2016.

[81] E. G. W. Peters, D. Marelli, M. Fu, and D. E. Quevedo, “Unified approach to controller
and MMSE estimator design with intermittent communications,” in 55th IEEE conference
on decision and control, CDC, Las Vegas, NV, USA, 2016, pp. 6832–6837.

[82] E. G. W. Peters, D. Marelli, D. E. Quevedo, and M. Fu, “Controller design for networked
control systems affected by correlated packet losses,” in IFAC world congress, Toulouse,
France, 2017.

[83] ——, “Predictive control for networked systems affected by correlated packet loss,” Inter-
national journal of robust and nonlinear control, 2017, Early access for Special Issue on
Stochastic Predictive Control.

[84] E. G. W. Peters, D. E. Quevedo, and M. Fu, “Co-design for control and scheduling over
wireless industrial control networks,” in 54th IEEE conference on decision and control,
CDC, Osaka, Japan, 2015, pp. 2459–2464.

[85] ——, “Controller and scheduler codesign for feedback control over IEEE 802.15.4 networks,”
IEEE transactions on control systems technology, vol. 24, no. 6, pp. 2016–2030, 2016.

[86] K. Plarre and F. Bullo, “On Kalman filtering for detectable systems with intermittent
observations,” IEEE transactions on automatic control, vol. 54, no. 2, pp. 386–390, 2009.

[87] R. Postoyan, N. Van De Wouw, D. Nesic, and W. Heemels, “Tracking control for nonlin-
ear networked control systems,” Automatic control, IEEE transactions on, vol. 59, no. 6,
pp. 1539–1554, 2014.

[88] D. E. Quevedo, A. Ahlén, and K. H. Johansson, “State estimation over sensor networks
with correlated wireless fading channels,” IEEE transactions on automatic control, vol. 58,
no. 3, pp. 581–593, 2013.

144



Bibliography
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